ROOT PoW 2025 — Interpreter

Vassil

Question: do we want to do another upgrade next year?
Making things more resilient -> tradeoff speed vs stability

o There has been some ongoing work on the llvm side

o How can we make someone else contribute their work for us? (we are a small team)
We lack test coverage; the more we go towards llvm upstream the more we will/should
upstream also tests
Eventually we should aim to be able to switch llvm version within a week
JIT-level optimization of virtual calls would be very useful because ROOT interfaces have a
lot of virtual functions (e.g. RDF)

o We have a bunch of PRs that go in that direction

Jonas H.

- two concrete steps:

- reviewing / cleaning up downstream patches

Aaron

Review the language extensions we have in cling (e.g. “auto auto”) -> there are probably
some more low-hanging fruits that we could get rid of.

o Can we reduce the cling-specific complexity we have?

o Philippe: at the same time, we should not reduce the feature set we have arbitrarily

Cling-repl -> lot of interfaces that delegate to pyroot but could be handled in the compiler.
E.g. we can offload some lookups to clang

Lots of benefits in landing interop (e.g. unit tests)

Adopting interop would use some more standard facilities from clang than using root-meta

Jonas R.

We're still suffering from memory leaks in pyroot (pyroot doesn’t know about ownership of
the value returned from C++)

o C++ attribute that cling understands that tells python if the user owns the value
Better support for modern c++ in python: currently a user is penalized for using certain
features (e.g. there is auto-casting of raw pointers but not of smart pointers)

o We should automatically downcast smart ptrs

o We should have C++20-specific support e.g. transparent conversion between numpy

arrays and std::span
Should we try to reduce patches in respect to upstream cppyy? -> probably not very
prioritary since cppyy is not in active development



- Same thing for cling-repl
- HW accelerators support: sycl/cuda
o Vassil: cuda works pretty well in cling, not working in ROOT. Doable, low hanging
fruit to make it work.
o Dev: we can also run sycl, there is a PR
- JonasR/Vassil: we should not treat cppyy the same way as llvm because their development pace
is very different (for llvm we play catch-up, for cppyy we are mainly ahead); if we go for cpp-
interop it will be a waste of effort

Dev

- Comment: the existing patches we have don’t hurt that much in upgrading, it's mostly a
problem of rebasing. Moving from cling to clang-repl would help in this.
- Question: do we still want to move to clang-repl if we want to adopt cpp-interop?
- Vassil: cpp-interop sits on top of the interpreter
- Vassil: vision: we will have our own fork of llvm (with or without patches) and we have cpp-
interop on top of it

Vincenzo

- Mainteinability:
o Upgrades to future llvm
o Upgrades to our python packaging systems (conda, pip(?)) -> at least for conda there
will always be a need for manual intervention, which can be quite frequent (may be
mitigated by nightly builds). E.g. updates to mac-os sdk that change the libc++
version (which we cannot simply pin in conda because we’d force that version on
downstream packages). There is a sequence of actions that need to be done before
we can update the root conda package, part of which depends on outside
organizations (conda feedstock)
o We will be forced to keep moving to future Ilvm versions, if anything due to mac os.
o We need to write down these big efforts on the PoW
- Comment: if we write down something in the PoW we should have “accountability” (a
person we can refer to for that specific item)

Philippe

- Make sure the JITted code is debuggable (we see the stack trace etc)
o Thisis already supported!
o Should we make it the default in debug builds?

LOW HANGING FRUITS

- Cuda support in ROOT

- Enabling debug info in JIT

- Patch review (medium-term)
o Reorganize them to make them self-contained
o See if we can drop any



o Have a clear statement somewhere on why we need a specific patch (to be re-
evaluated every upgrade)
- cpp-interop in the build system
- Cppyy patches (not backend) -> our patches change the behavior so it is up for debate

Other things safe to put in the PoW

- Adopt JITcall in call func

- Use interop unit tests to validate the interpreter backend -> ability to configure interop to
use either cling or clang-repl and it works the same

- Dynamic library manager

- Sycl supportin cling



