
ROOT PoW 2025 – Interpreter

Vassil

- Question: do we want to do another upgrade next year?

- Making things more resilient -> tradeoff speed vs stability

o There has been some ongoing work on the llvm side

o How can we make someone else contribute their work for us? (we are a small team)

- We lack test coverage; the more we go towards llvm upstream the more we will/should

upstream also tests

- Eventually we should aim to be able to switch llvm version within a week

- JIT-level optimization of virtual calls would be very useful because ROOT interfaces have a

lot of virtual functions (e.g. RDF)

o We have a bunch of PRs that go in that direction

Jonas H.

- two concrete steps:

- reviewing / cleaning up downstream patches

- Review the language extensions we have in cling (e.g. “auto auto”) -> there are probably

some more low-hanging fruits that we could get rid of.

o Can we reduce the cling-specific complexity we have?

o Philippe: at the same time, we should not reduce the feature set we have arbitrarily

Aaron

- Cling-repl -> lot of interfaces that delegate to pyroot but could be handled in the compiler.

E.g. we can offload some lookups to clang

- Lots of benefits in landing interop (e.g. unit tests)

- Adopting interop would use some more standard facilities from clang than using root-meta

Jonas R.

- We're still suffering from memory leaks in pyroot (pyroot doesn’t know about ownership of

the value returned from C++)

o C++ attribute that cling understands that tells python if the user owns the value

- Better support for modern c++ in python: currently a user is penalized for using certain

features (e.g. there is auto-casting of raw pointers but not of smart pointers)

o We should automatically downcast smart ptrs

o We should have C++20-specific support e.g. transparent conversion between numpy

arrays and std::span

- Should we try to reduce patches in respect to upstream cppyy? -> probably not very

prioritary since cppyy is not in active development

- Same thing for cling-repl

- HW accelerators support: sycl/cuda

o Vassil: cuda works pretty well in cling, not working in ROOT. Doable, low hanging

fruit to make it work.

o Dev: we can also run sycl, there is a PR

- JonasR/Vassil: we should not treat cppyy the same way as llvm because their development pace

is very different (for llvm we play catch-up, for cppyy we are mainly ahead); if we go for cpp-

interop it will be a waste of effort

Dev

- Comment: the existing patches we have don’t hurt that much in upgrading, it’s mostly a

problem of rebasing. Moving from cling to clang-repl would help in this.

- Question: do we still want to move to clang-repl if we want to adopt cpp-interop?

 - Vassil: cpp-interop sits on top of the interpreter

- Vassil: vision: we will have our own fork of llvm (with or without patches) and we have cpp-

interop on top of it

Vincenzo

- Mainteinability:

o Upgrades to future llvm

o Upgrades to our python packaging systems (conda, pip(?)) -> at least for conda there

will always be a need for manual intervention, which can be quite frequent (may be

mitigated by nightly builds). E.g. updates to mac-os sdk that change the libc++

version (which we cannot simply pin in conda because we’d force that version on

downstream packages). There is a sequence of actions that need to be done before

we can update the root conda package, part of which depends on outside

organizations (conda feedstock)

o We will be forced to keep moving to future llvm versions, if anything due to mac os.

o We need to write down these big efforts on the PoW

- Comment: if we write down something in the PoW we should have “accountability” (a

person we can refer to for that specific item)

Philippe

- Make sure the JITted code is debuggable (we see the stack trace etc)

o This is already supported!

o Should we make it the default in debug builds?

LOW HANGING FRUITS

- Cuda support in ROOT

- Enabling debug info in JIT

- Patch review (medium-term)

o Reorganize them to make them self-contained

o See if we can drop any

o Have a clear statement somewhere on why we need a specific patch (to be re-

evaluated every upgrade)

- cpp-interop in the build system

- Cppyy patches (not backend) -> our patches change the behavior so it is up for debate

Other things safe to put in the PoW

- Adopt JITcall in call func

- Use interop unit tests to validate the interpreter backend -> ability to configure interop to

use either cling or clang-repl and it works the same

- Dynamic library manager

- Sycl support in cling

-

