

Horia Hulubei National Institute for R&D Horia Hulubei in Physics and Nuclear Engineering

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Proposal to the ISOLDE and Neutron Time-of-Flight Committee

The neutron capture cross section of 124 Sn and its impact on neutrinoless double β decay searches

September 25, 2024

A. Gandhi¹, M. Boromiza¹, C. Petrone¹, A. Negret¹, A. Olacel¹, C. Borcea¹, V. Alcayne² M. Bacak³, A. Casanovas-Hoste^{3,4,5}, S. Cristallo⁶ F. Gunsing⁷ A. Oprea⁸, N. Patronis^{3,9}, T. Rauscher¹⁰ D. Vescovi¹¹ and the n_TOF Collaboration¹²

¹Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania 2 Centro de Investigaciones Energèticas Medioambientales y Tecnològicas (CIEMAT). Spain 3 European Organization for Nuclear Research (CERN), Switzerland ⁴Institut de Tècniques Energètiques (INTE) - Universitat Politècnica de Catalunya, Spain 5 Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain 6 Istituto Nazionale di Astrofisica - Osservatorio Astronomico d'Abruzzo, Teramo, Italy ⁷ CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ⁸European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium ⁹ University of Ioannina, Greece
¹⁰ Department of Physics, University of Basel, Basel, Switzerland ¹¹Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy¹²unun cern.ch/ntof

Spokesperson(s): A. Gandhi [aman.gandhi@nipne.ro] M. Boromiza [marian.boromiza@nipne.ro] Technical coordinator: Oliver Aberle [oliver.aberle@cern.ch]

Why do we need 124 Sn(n, γ) cross section data? Motivation A

Detector : tin-loaded liquid scintillator for an active source-detector technique

Hwang, M. J., et al., Astroparticle Physics 31.6

(2009): 412-416.

and TATA institute

Detector: Sn cryogenic superconducting bolometer (TIN.TIN -The India based TIN detector)

Nanal, Vandana.EPJ Web of Conferences, EDP Sciences 66 (2014)

Background assessment of 0*νββ* decay searches

- ❑ ¹²⁴Sn is one of the promising 0*νββ* candidates
- ❑ They measure the 0*νββ* decay peak which is at an energy equal to the Q-value of the reaction: 2292.7(4) keV
- \Box Golden channel: decay rate <-> direct access to neutrino mass $\&$ CP violating Majorana phases (can not be probed by v oscillations experiments)
	- ❑ 0*νββ* is a second order weak interaction process and the event rates are very low $(T_{1/2} > 10^{17} y)^*$
- ❑ They are extremely sensitive to **background signals which can mimic the signal of interes**t -> neutron-induced background in the Singh, M.K., et al. Indian J Q -value region*

**Gupta, G., et al., Applied Radiation and Isotopes 158 (2020): 108923* *Dawson, J., et al., Physical Review C 78.3 (2008): 035503

Motivation A

Background assessment of 0*νββ* decay experiments

ISSUE: γ rays following neutron capture on 124 Sn can mimic the 0*νββ* decay signal!!!

❑ Literature* shows that, after activating a ¹²⁴Sn sample with a neutron thermal flux and measuring the delayed *γ* following neutron capture and subsequent *β -* decays with a HPGe detector, a strong summing peak of 2288.2 keV has been seen* mple with a neutron thermal flux and measuring
 \cdot delayed γ following neutron capture and
 \cdot
 \cdot decays with a HPGe detector, a

ong summing peak of 2288.2 keV has been seen*
 \downarrow
 $\Omega_{\text{Ov}\beta\beta} = 2292.7 \text{ keV$

Q_{0νββ}= 2292.7 keV

Also, a (worrying) 30% simulation vs. experiment difference was observed*

**Gupta, G., et al., Applied Radiation and Isotopes 158 (2020): 108923*

Motivation A

Why do we need ¹²⁴Sn(n,γ) cross section data? Motivation B

Problem in reactor fuel depletion calculations for ¹²⁵Sb:

Annals of Nuclear Energy 161 (2021) 108441

Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene

Monte Carlo neutronics benchmarks on nuclear fuel depletion: A review Sean P. Martinson, Sunil S. Chiravath nt of Nuclear Engineering, Texas ABM University, 3133 TAMU, College Station, TX 77843-3133, United State

ABSTRACT

Monte Carlo (MC) neutronics codes are used widely for academic and industrial needs. Several schemes of coupling MC neutronics code with isotope generation and depletion code exist, which are used for performing nuclear fuel depletion simulations. These simulations can estimate the inventory of isotopes in neutron irradiated nuclear reactor fuel. However, the accuracy of these simulations shall be validated through experiments. MC codes are seldom validated by isotopic benchmarks compared to criticality benchmarks. This work compiles and analyzes the fuel depletion benchmarks and validations used to analyze the performance of MC-based fuel depletion neutronics codes. Analyses of these benchmarks and validations showed that the computed concentrations of 133 Cs, 135 Cs, 137 Cs, 148 Nd, 239 Pu, 240 Pu, and 241 Pu in the irradiated fuel by the depletion codes agreed with the measured values within 10% error. However, the computed concentrations of 125 Sb, 242 Cm, 243 Cm, 244 Cm, 245 Cm, and 246 Cm had errors more than 15% compared to the measured values. Ventina depletion code showed the most accurate predictions for the greatest number of isotope concentrations compared to ORIGEN2 and CINDER90.

© 2021 Elsevier Ltd. All rights reserved.

**NUREG/CR-6798
ORNL/TM-2001/259**

Motivation B

Isotopic Analysis of High-Burnup PWR Spent Fuel Samples From the Takahama-3 Reactor

,

2

Section 3

Manuscript Completed: May 2002
Date Published: January 2003

At discharge, except for ²³⁹Pu which includes contribution from ²³⁹Np precursor.
Burnup estimated using ¹⁴⁸Nd analysis.

Motivation B

NUCLEAR TECHNOLOGY · VOLUME 197 · 1-11 · JANUARY 2017 C American Nuclear Society DOI: http://dx.doi.org/10.13182/NT16-76

@ANS

Experimental and Computational Forensics Characterization of Weapons-Grade Plutonium Produced in a Fast Reactor **Environment**

The final step in this part of the investigation was to pare the quantities of the various fission products icted from the MCNPX burnup simulation to those sured using gamma spectroscopy. Both the simulated measured values were normalized to the mass of $D₂$ in order to account for differences in the simulated and the mass of the actual sample. These comparadata are shown in Table V. As can be seen in Table V, lifference between the simulated and measured values nost of the isotopes is equal to or less than 12%; howthe activity predicted for $125Sb$ was over 50% larger the measured activity. Upon further investigation, it was discovered that ¹²⁵Sb is a particularly troublesome nuclide to

Comparison of Gamma Spectroscopy

Measurements to Simulation

 $\mathrm{^{a}S/E}$ = simulation/measurement.

Motivation B

Figure: Burnup chain adjacent to 125Sb

Neutron Environment

Present status of ¹²⁴Sn(n,*γ*) cross section data

A. Kimura et al., EPJ Web of Conferences 146, 11031 (2017) in ANNRI at MLF/J-PARC (ND2016 proceedings)

Cross Section (barns)

Elastic to capture ratio -> very unfavorable!!!

Neutron energy resolution is not paramount -> AVERAGE CROSS SECTION (above 20 keV)

Fig. 15. Comparison between the evaluated neutron flux in EAR2 (blue) and in EAR1 (red). The increase at the new measuring station is on average a factor 40.

Table: Average distance in-between resonances against energy resolution at EAR1 versus EAR2

Neutron Energy range	No. of resonances (ENDF/B- VIII.O)	Avg. distance between Capture Resonances	Energy resolution in EARI [*]	Energy resolution in EAR2 [*]	Goal: resolve resonances up to 15-20 keV
50 eV-10 keV	7	1200 eV	10eV	200eV	
10-100 keV	67	1300 eV	300 eV	3000 eV	
100-200 keV	68	1500 eV	800 eV		
200-314 keV	47	2400 eV	1200 eV		

*Guerrero, C., et al. The European Physical Journal A 49 (2013): 1-15.

*Lerendegui-Marco, J., et al. The European Physical Journal A 52 (2016): 1-10.

Enriched ¹²⁴Sn

Enriched sample -> paramount!

Sample(s) Details

- 3 disks (1 g each)
- 97.9% enrichment
- 10 mm diameter
- 1.8 mm thickness

- 25 g (natural Tin rod)
- 99.999% Purity
- 13 mm diameter

Available @ IFIN-HH Target lab

Available @ Nuclear Physics Institute Czech Academy of Sciences (I. Tomandl, F. Marek)

Resolution function and multiple scattering -> SAMMY-based calculations

-
- \triangleright In EAR2 : 1.0 g sample (0.00618 at/b) \triangleright In EAR2 : 0.1 g sample (0.000618 at/b)

How will we measure?

❑ Setup of 9 sTED detectors

- ❑ Measure from thermal to highest reachable energy by these detectors in EAR2
- \Box Use an enriched sample: 97.9% of ^{124}Sn
- ❑ Thin-thick approach:
	- Up to 15-20 keV- $>$ thick (1.0 g)
	- Average xs above 20 keV- $>$ thick (3.0 g)
	- First resonance \rightarrow thin (0.1 g)

□ **Ancillary**: also irradiate natSn, ¹⁹⁷Au, ^{nat}C, ^{nat}Pb samples + Empty

Experimental Details [EAR2]

The 9 sTED's setup used in EAR2 for the ²⁰⁹Bi(n,γ) campaign

Counts estimation:

⮚ 1.0 g sample, *0.00618 at/b* (10 mm-diameter)

Proton Request [EAR2]

⮚ 0.1 g sample, *0.000618 at/b* (10 mm-diameter)

Total background = empty+in-beam γ +elastic $Total Counts = 124Sn(n,g) - 0.1/lg + total background$

Proton Request [EAR2]

Proton Request [EAR2]

Counts estimation:

⮚ 3.0 g sample, *0.01856 at/b* (10 mm-diameter)

Eff-4.5%, JEFF-3.3 [9 sTEDs]

Eff-13.5%, JEFF-3.3 [27 sTEDs]

Proton Request [EAR2]

For 124 Sn (1 g sample) -> 6.5x10¹⁷ protons

For 124 Sn (0.1 g sample) -> 1.1×10^{17} protons

For 124 Sn (3 g sample) -> 4.8×10^{17} protons

For natSn -> 1.1x10¹⁷ protons

Ancillary: normalisation (¹⁹⁷Au) + background estimation (^{nat}Pb, ^{nat}C, Empty) -> <u>6.5x10¹⁷ protons</u>

In total: 2.0x10¹⁸ protons

❑ Motivation:

❑ Status of data:

✔No ToF neutron capture data exist to map out first resonances below 10 keV, questionable resonances…

❑ Experiment goals:

 \blacktriangleright To provide for the first time reliable, low uncertainty neutron capture ToF data from thermal to 15-20 keV -> resonance parameters for the most intense resonances

◆ Possibly average cross section above 20 keV

❑ Impact:

✔ To better quantify the neutron-induced background for neutrinoless double *β* decay (0*νββ*) searches

✔ Optimistically, to at least partially clarify the differences between various evaluations -> improve on ¹²⁵Sb problem

Proton request Sample Protons 124Sn (1 g) 6.5x10¹⁷

Summary

Thanks

Do you have any questions?

https://www.nipne.ro/proiecte/pn3/ntof / https://www.nipne.ro/

Contact Us Address: Str. Reactorului no.30, P.O.BOX MG-6, Bucharest - Magurele, ROMANIA Phone: +(4021) 404.23.00 Fax: +(4021) 457.44.40

