

Investigating the origins of the kink in charge radii at N=28

A. Antušek¹, N. Azaryan², M. Baranowski³, M. Bissell², M. Chojnacki², J. Dobaczewski⁴, J. Ginges⁶, R. de Groote⁷, R. Han⁸, A. Hurajt⁹, M. Kortelainen⁸, A. Koszorous⁷, M. Kowalska², I. Michelon², A. Nagpal², D. Paulitsch², M. Pešek², M. Piersa-Siłkowska², B. Roberts⁶, A. Sparks², H. Wibowo⁴ and D. Zakoucky¹⁰.

¹ Faculty of Materials Science and Technology, Slovak University of Technology, 917 24 Trnava, Slovak Republic

 2 Experimental Physics Department, CERN, 1211 Geneva, Switzerland

³Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland

⁴Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

⁵Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland

 δ School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia ${}^{7}KU$ Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

⁸Department of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland

 9 Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynskádolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic ¹⁰Nuclear Physics Institute, Acad. Sci. Czech Rep., CZ-25068, Rez, Czech Republic

> Spokespersons: M. L. Bissell, M. Kowalska Contact person: M. L. Bissell

Topic of PhD thesis of Anu Nagpal, U York

Motivation: 'kink' in charge radii at N = 28

Motivation: 'kink' in charge radii at N = 28

Theoretical attempts to reproduce and explain the kink

48

50

52

Approach to address the question: hyperfine anomaly

- Magnetic hyperfine anomaly (Bohr Weisskopf effect): $\epsilon = \epsilon_{\pi} + \epsilon_{\nu}$
- Spin and orbital contributions to magnetic moment + their radial distributions:

$$
-\epsilon_{\pi} \approx \sum_{i=1}^{3} \left[\overline{\alpha_{S\pi} b_{2i,S} \langle R^{2i} \rangle_{S\pi}} + \overline{\alpha_{L\pi} b_{2i,L}} \langle R^{2i} \rangle_{L\pi} + \overline{\alpha_{S\pi} b_{2i,S}} - b_{2i,L} \rangle \langle Z R^{2i} \rangle_{S\pi} \right]
$$

$$
-\epsilon_{\nu} \approx \sum_{i=1}^{3} \left[\overline{\alpha_{S\nu} b_{2i,S} \langle R^{2i} \rangle_{S\nu}} + \overline{\alpha_{L\nu} b_{2i,L}} \langle R^{2i} \rangle_{L\nu} + \overline{\alpha_{S\nu} b_{2i,S}} - b_{2i,L} \rangle \langle Z R^{2i} \rangle_{S\nu} \right]
$$

atomic factors determined from electronic wave functions in nuclear vicinity (atomic theory) spin and orbital contributions to magnetic moment μ spin and orbital radial distributions; 'magnetisation radii' **Information about nuclear structure complementary to other observables**

Differential hyperfine anomaly between isotopes A&B in 1 isotopic chain (+ 1 atomic state):

$$
{}^4\Delta^B \approx \epsilon_A - \epsilon_B \approx \left(\epsilon_{A\pi} - \epsilon_{B\pi}\right) + \left(\epsilon_{A\nu} - \epsilon_{B\nu}\right)
$$

Difference **in spin and orbital 'magnetisation** radii' Difference in **spin and orbital 'magnetisation radii**' and/or in **spin and orbital contribution to** and/or in **spin and orbital contribution to**

Information about changes in nuclear structure along isotopic chain complementary to other observables and probing other aspects of nuclear models

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but $1st$ time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

Paired neutrons $47\Delta^{39}$ = 0.37(1)%, mostly due to unpaired proton

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

-> Agreement with μ 's + HA only when spin contribution scaled to 75-85%, orbital - unchanged

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al) 47 39

Proposal: 'magnetisation radii' and deformation at N=28

- **' magnetisation radius' across N=28: Differential hyperfine anomaly for 47,48,49K**

 $^{A}\Delta^{B}\approx\epsilon_{A}-\epsilon_{B}\approx(\epsilon_{A\pi}-\epsilon_{B\pi})+(\epsilon_{A\nu}-\epsilon_{B\nu})$

 ϵ_{48} – mostly due to unpaired proton at Z=19 and neutron at N=29 ϵ_{47} , ϵ_{49} – mostly due to unpaired proton at Z=19 only

=> $47\Delta^{48}$ and $48\Delta^{49}$: single out valence-neutron 'magnetisation radius' => constraints on the radial extent of the neutron p3/2 orbit

- ➢ **Precise magnetic moment & g-factor**: liquid beta-NMR: similar setup as for ⁴⁷K & for battery project
- ➢ **Precise hyperfine structure constant A**: rf laser double resonance spectroscopy: being developed within ERC Grant PreSOBEN

- **deformation across N=28: Quadrupole moment of ⁴⁸K**

Determined using beta-NMR/NQR in crystal with known electric-field gradient (potassium di-hydrogen phosphate (KH2PO4) or KDP single crystal)

$$
{}^A\Delta^B\ =\frac{g_B\ A_A}{g_A\ A_B}-1
$$

$$
^{47}\Delta^{39}=0.37(1)\%
$$

Rf-laser double resonance setup

Expected yields and beamtime request

- UCx target, HRS, ISCOOL in bunched tune and bunched mode
	- ➢ Yields based on our 47,49K beamtimes

 $>10^6$ μ C⁻¹ 1.3×10⁶ μ C⁻¹ 2.7×10⁵ μ C⁻¹

Beamtime request:

Total: 21 Online shifts split over two beamtimes $+9$ shifts offline