

Investigating the origins of the kink in charge radii at N=28

A. Antušek¹, N. Azaryan², M. Baranowski³, M. Bissell², M. Chojnacki², J. Dobaczewski⁴, J. Ginges⁶, R. de Groote⁷, R. Han⁸, A. Hurajt⁹, M. Kortelainen⁸, A. Koszorous⁷, M. Kowalska², I. Michelon², A. Nagpal², D. Paulitsch², M. Pešek², M. Piersa-Siłkowska², B. Roberts⁶, A. Sparks², H. Wibowo⁴ and D. Zakoucky¹⁰.

¹Faculty of Materials Science and Technology, Slovak University of Technology, 917 24 Trnava, Slovak Republic

²Experimental Physics Department, CERN, 1211 Geneva, Switzerland

³Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland

⁴Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

⁵Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland

⁶School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia ⁷KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

⁸Department of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland

⁹Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynskádolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic ¹⁰Nuclear Physics Institute, Acad. Sci. Czech Rep., CZ-25068, Rez, Czech Republic

Spokespersons: M. L. Bissell, M. Kowalska Contact person: M. L. Bissell

Topic of PhD thesis of Anu Nagpal, U York

Motivation: 'kink' in charge radii at N = 28

Motivation: 'kink' in charge radii at N = 28

Different theoretical approaches faced challenges in reproducing slope of the kink

Theoretical attempts to reproduce and explain the kink

52

Approach to address the question: hyperfine anomaly

- Magnetic hyperfine anomaly (Bohr Weisskopf effect): $\epsilon = \epsilon_{\pi} + \epsilon_{\nu}$
- Spin and orbital contributions to magnetic moment + their radial distributions:

$$-\epsilon_{\pi} \approx \sum_{i=1}^{3} \left[\alpha_{S\pi} b_{2i,S} \langle R^{2i} \rangle_{S\pi} + \alpha_{L\pi} b_{2i,L} \langle R^{2i} \rangle_{L\pi} + \alpha_{S\pi} b_{2i,S} - b_{2i,L} \rangle \langle ZR^{2i} \rangle_{S\pi} \right]$$
$$-\epsilon_{\nu} \approx \sum_{i=1}^{3} \left[\alpha_{S\nu} b_{2i,S} \langle R^{2i} \rangle_{S\nu} + \alpha_{L\nu} b_{2i,L} \rangle \langle R^{2i} \rangle_{L\nu} + \alpha_{S\nu} b_{2i,S} - b_{2i,L} \rangle \langle ZR^{2i} \rangle_{S\nu} \right]$$

atomic factors determined from electronic wave functions in nuclear vicinity (atomic theory)
 spin and orbital contributions to magnetic moment µ
 spin and orbital radial distributions; 'magnetisation radii'

Differential hyperfine anomaly between isotopes A&B in 1 isotopic chain (+ 1 atomic state):

$$^{A}\Delta^{B} \approx \epsilon_{A} - \epsilon_{B} \approx (\epsilon_{A\pi} - \epsilon_{B\pi}) + (\epsilon_{A\nu} - \epsilon_{B\nu})$$

Difference in π spin and orbital 'magnetisation radii' Difference in ν spin and orbital 'magnetisation radii' and/or in spin and orbital contribution to μ and/or in spin and orbital contribution to μ

Information about changes in nuclear structure along isotopic chain complementary to other observables and probing other aspects of nuclear models

Proof-of-principle: hyperfine anomaly of ⁴⁷K vs ³⁹K

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation
 (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

Paired neutrons ${}^{47}\Delta^{39}$ = 0.37(1)%, mostly due to unpaired proton

Proof-of-principle: hyperfine anomaly of ⁴⁷K vs ³⁹K

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

Paired neutrons ${}^{47}\Delta^{39} = 0.37(1)\%$, mostly due to unpaired proton

Proof-of-principle: hyperfine anomaly of 47K vs 39K

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)

 47
 39

 19
 28

 17.50 s 1/2+*

 stable 3/2+*

-> Agreement with μ 's + HA only when spin contribution scaled to 75-85%, orbital - unchanged

Proof-of-principle: hyperfine anomaly of 47K vs 39K

- Experiment: liquid beta-NMR at VITO (+ HFS from literature, COLLAPS)
- Atomic theory: relativistic all-orders correlation potential approach (J. Ginges, B. Roberts, Brisbane)
- Nuclear theory: not simplified distribution (ball, single-particle orbit), but 1st time DFT calculation (J. Dobaczewski, York; M. Kortelainen, Jyvaskyla, et al)
 47 17
 39 17

Proposal: 'magnetisation radii' and deformation at N=28

' magnetisation radius' across N=28:
 Differential hyperfine anomaly for ^{47,48,49}K

 ${}^{A}\Delta^{B} \approx \epsilon_{A} - \epsilon_{B} \approx (\epsilon_{A\pi} - \epsilon_{B\pi}) + (\epsilon_{A\nu} - \epsilon_{B\nu})$

 ϵ_{48} – mostly due to unpaired proton at Z=19 and neutron at N=29 ϵ_{47} , ϵ_{49} – mostly due to unpaired proton at Z=19 only

=> ${}^{47}\Delta{}^{48}$ and ${}^{48}\Delta{}^{49}$: single out valence-neutron 'magnetisation radius' => constraints on the radial extent of the neutron p3/2 orbit

	\mathbf{I}^{π}	μ (μ _N)	A (MHz)	$\varepsilon_{\text{theo}}$ (%)	$^{48}\Delta^{\mathrm{x}}_{\mathrm{theo}}$ (%)
⁴⁷ K	$\frac{1}{2}^{+}$	+1.9292 (2) [58]	+3413.2 (3)	-0.126	0.085
⁴⁸ K	1-	-0.8997 (3) [45]	-795.9 (3)	-0.211	-
⁴⁹ K	$\frac{1}{2}^{+}$	+1.3386 (8) [40]	+2368.2 (14)	-0.121	0.090

- > Precise magnetic moment & g-factor: liquid beta-NMR: similar setup as for ⁴⁷K & for battery project
- Precise hyperfine structure constant A: rf laser double resonance spectroscopy: being developed within ERC Grant PreSOBEN

- deformation across N=28: Quadrupole moment of ⁴⁸K

- Determined using beta-NMR/NQR in crystal with known electric-field gradient (potassium di-hydrogen phosphate (KH2PO4) or KDP single crystal)

$$^{A}\Delta^{B} = \frac{g_{B} A_{A}}{g_{A} A_{B}} - 1$$

$$^{47}\Delta^{39} = 0.37(1)\%$$

Rf-laser double resonance setup

Expected yields and beamtime request

UCx target, HRS, ISCOOL in bunched tune and bunched mode

Yields based on our 47,49K beamtimes

 $>10^{6} \mu C^{-1} \ 1.3 \times 10^{6} \mu C^{-1} \ 2.7 \times 10^{5} \mu C^{-1}$

Beamtime request:

	³⁹ K	⁴⁷ K	⁴⁸ K	⁴⁹ K				
Beta-NMR: 12 RIB shifts								
Optimise spin-polarisation (laser beam overlap, laser power change) +HFS scan	-	0.5	0.5	0.5				
Determine Larmor frequency in KCl crystal	-	0.5	0.5	0.5				
Measure precise Larmor frequency in EMIM- DCA ionic liquid	-	1	2	2				
Measure quadrupole splitting in non-cubic crystal			4					
Rf-laser spectroscopy: 9 stable + 9 RIB shifts								
Optimisation of: transmission, rf-beam overlap, rf power, experimental steps	9	1	-	-				
optimise optical pumping and minimise photon background		1	-	-				
Rf scans around HFS resonance		2	2	3				

Total: **21** Online shifts split over two beamtimes + **9** shifts offline