Nuclear moments of excited states in neutron-rich Sn isotopes studied by on-line PAC (IS673)

Addendum: Request for an additional off-line run using Sb sources

•H. Haas^{1,2}, G. Georgiev³, J.G. Correia^{4,2}, J. Röder^{1,2}, J. Schell^{5,2}, H. Masenda⁶, H.P. Gunnlaugsson⁷, I.C.J. Yap⁵, T.T. Dang⁵, R. Santos⁸, P.M. Rodrigues¹⁸,

A. Andreyev⁹, D.L. Balabanski¹⁰, Y.Y. Cheng¹¹, K. Chrysalidis², V. Fedosseev², L.M. Fraile¹², Y. Ichikawa¹³, A. Kusoglu¹⁴, D.C. Lupascu⁵, T.J. Mertzimekis¹⁵, A.E. Stuchbery¹⁶, H. Ueno¹⁷, S.G. Wilkins², D.T. Yordanov³ •**Spokespersons:** H. Haas, G. Georgiev

•Our aim: Test the additivity rule for moments of two-particle states in a chain of semi-magic (Sn) nuclei •The best candidates: The 5⁻ states of (pure ?) configuration {1h11/2⁻,3s1/2⁺}

•These states are isomers with suitable half-life from 116 Sn to 130 Sn

•Most moments of the single-particle states in the neighboring odd isotopes have been determined

•Does the simple shell-model picture work or what could it teach us?

• ¹Dept. of Physics and CICECO, University of Aveiro, Portugal; ²CERN, 1211 Geneva-23, Switzerland; ³IJC Lab, CNRS-IN2P3, Université Paris-Saclay, Orsay, France; ⁴C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal; ⁵Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Germany; ⁶Univ. of Witwatersrand, South Africa; ⁷Science Institute, University of Iceland, Iceland; ⁸FMF, Universität Freiburg, Germany; ⁹University of York, UK; ¹⁰ELI-NP, Bucharest, Romania; ¹¹Dept. of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China; ¹²Complutense University, Madrid, Spain; ¹³Dept. of Physics, Kyushu University, Japan; ¹⁴University of Istanbul, Turkey; ¹⁵Univ. of Athens, Greece; ¹⁶Dept. of Nuclear Physics, RSP, The Australian National University, Canberra, Australia; ¹⁷RIKEN Nishina Center, Japan; ¹⁸IFIMUP, DFA-FCUP, Porto, Portugal;

The γ - γ PAC technique for pure interactions:

From the experimental perturbation pattern one extracts

 $v_0 = e Q * Vzz / h$

Electric field gradient Vzz in non-cubic solid (from theory!) or reference isotope

 $v_L = \mu/I * B / h$ Magnetic field B from external magnet or ferromagnetic solid

60.3 m

Complex decay scheme: ¹¹⁶Sb to ¹¹⁶Sn 4 start transitions, 4 stop transitions Result: 16 R(t) functions Add all up (recalibrated) to improve statistics

Off-line run in October 2021 using 3 different PAC spectrometers

What we have measured:

^{116m}Sb(1hr) to ¹¹⁶Sn (5⁻,350ns) in Fe ^{116m}Sb(1hr) to ¹¹⁶Sn (5⁻,350ns) in Zn ^{118m}Sb(5hr) to ¹¹⁸Sn (5⁻,22ns) in Fe ¹²⁰Sb(5.8d) to ¹²⁰Sn (5⁻,5.6ns) in Graphite precision spectra give Q relative to ¹¹⁸Sn

accurate data, μ agrees with PAD expected spectrum not seen, failed annealing! good data for polarized Fe foil give μ ^{118m}Sb(5hr) to ¹¹⁸Sn (5⁻,22ns) in Zn annealing results in strong damping! Hope! ^{118m}Sb(5hr) to ¹¹⁸Sn (5⁻,22ns) in Graphite good data for QI, reference?, annealing studied

Difficulties encountered:

Annealing of Sb implanted in Zn at 200C apparently resulted in segregation at surface Spectra for ¹¹⁸Sn confirm this, preliminary data without annealing acceptable! For ^{118,120}Sn measurement in Gd or high external field needed for precision μ

On-line run in June 2023 using fully digital PAC spectrometer (LaBr₃)

What we have measured:

undamped spectrum at RT, v_q agrees with MS acceptable data for QI approximate value for μ good data! Q determined acceptable data, efg ratio Zn/Cd determined! very good data for μ , damping similar to ¹¹⁶Sn preliminary data for QI

Difficulties encountered:

For T1/2<10s isotopes time-structure of ISOLDE beam makes measurement inefficient! Suggested solutions: Including time in data system, replace photomultipliers with semiconductors, use staggered ISOLDE beam, use selective laser ionization Better interpretation of data in Graphite call for a (technically demanding) reference measurement with ¹¹⁸In implantation For states with T1/2 below 50ns Gd matrix (cooled) needed for accurate μ

The key result: PAC for ¹²⁴Sn(5⁻) in Zn and Cd

The necessary reference: v_Q for ¹¹⁶Sn(5⁻) in Cd at RT

The quest for precision quadrupole moments: • Missing data:

- 1) Accurate v_Q for ¹¹⁶Sn(5⁻) in Cd at RT
- 2) Reliable value of v_Q for ¹¹⁸Sn(5⁻) in Zn
- 3) Independent determination of Q(116) to Q(118) ratio
- 4) Relate the Q of 119 Sn(3/2⁺) to the values obtained here
- Proposed solution:
- 1) Measure v_0 for ¹¹⁶Sn in Cd (single crystal or foil)
- 2) High statistics PAC spectrum for ¹¹⁸Sn in Zn(SC, annealing?)
- 3) High statistics PAC spectrum for ¹¹⁶Sn in graphite(annealed)
- 4) Moessbauer spectrum for ¹¹⁹Sn in graphite(annealed)

mm/s

The way to more accurate magnetic moments:

- Present data:
- 1) Earlier measurements suggested a decrease of μ with mass
- 2) Our measurement for ¹¹⁸Sn also indicates a decrease
- 3) Our precision result slightly increases from ¹¹⁶Sn to ¹²⁴Sn !
- Proposed solution:
- 1) Measure μ for ¹¹⁸Sn in liquid (Ga or water) at high field
- 2) Measure μ for ¹¹⁸Sn in Gd (at low T)
- 3) Measure μ for ¹²⁰Sn in Gd (at low T)

Summary of proposed measurements

ISOLDE Beam, UC/RILIS						State of interest			Experiment		
	17	t _{1/2}	Int	Req	t _{coll}		1	t _{1/2}	meas	host	Nr
			[at/µĆ]	[at/samp]	[min]			[ns]			sa
^{116m} Sb	8	1 h	5 10 ⁷	1 10 ¹⁰	6	¹¹⁶ Sn	5	320	ν_{Q}	Gra	16
									ν_{Q}	Ćd	8
^{118m} Sb	8	5.1 h	1 10 ⁸	4 10 ¹⁰	30	¹¹⁸ Sn	5	22	ν_{Q}	Zn	2
									ν_{L}	Ga?	3
									ν_{L}	Gd	3
¹²⁰ Sb	8	5.8 d	2 10 ⁸	2 10 ¹¹	120	¹²⁰ Sn	5	8	ν_{L}	Gd	1
¹¹⁹ Sb	3/2+	38 h	2 10 ⁸	1 10 ¹¹	60	¹¹⁹ Sn	3/2+	18	ν_{Q}	Gra	2
									ν_{L}	Fe	2
^{119m} In	1/2	18 min	2 10 ⁸		online	¹¹⁹ Sn	3/2+	18	ν_{L}	Fe	4hrs
									ν_{Q}	Gra	4hrs

Simulated ¹¹⁹Sn Mössbauer spectrum, Sb in graphite, anneal 450 C

