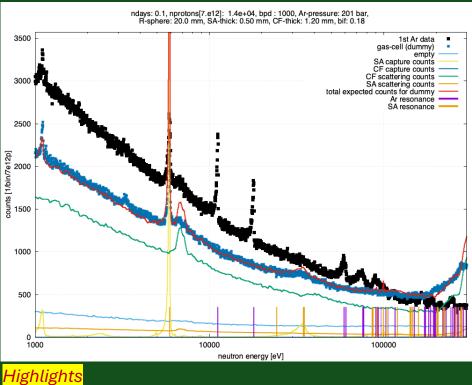


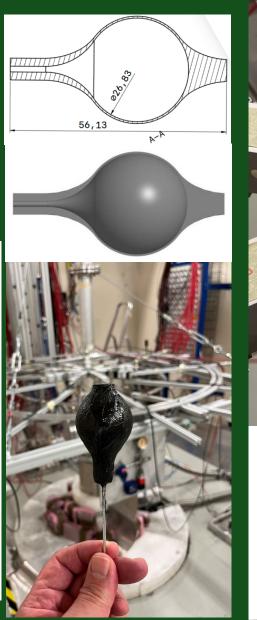
n_TOF Physics Report

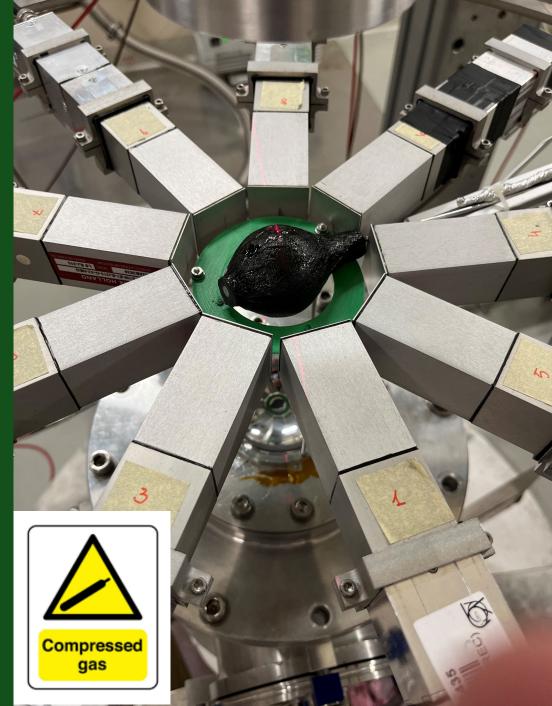
77th INTC meeting *November 2024*

Paolo Maria MILAZZO

and Victor ALCAYNE-AICUA, Michi BACAK, Zina ELEME, Fran GARCIA INFANTES, Stella GOULA, Alice MANNA, Alberto MENGONI, Riccardo MUCCIOLA, Michele SPELTA

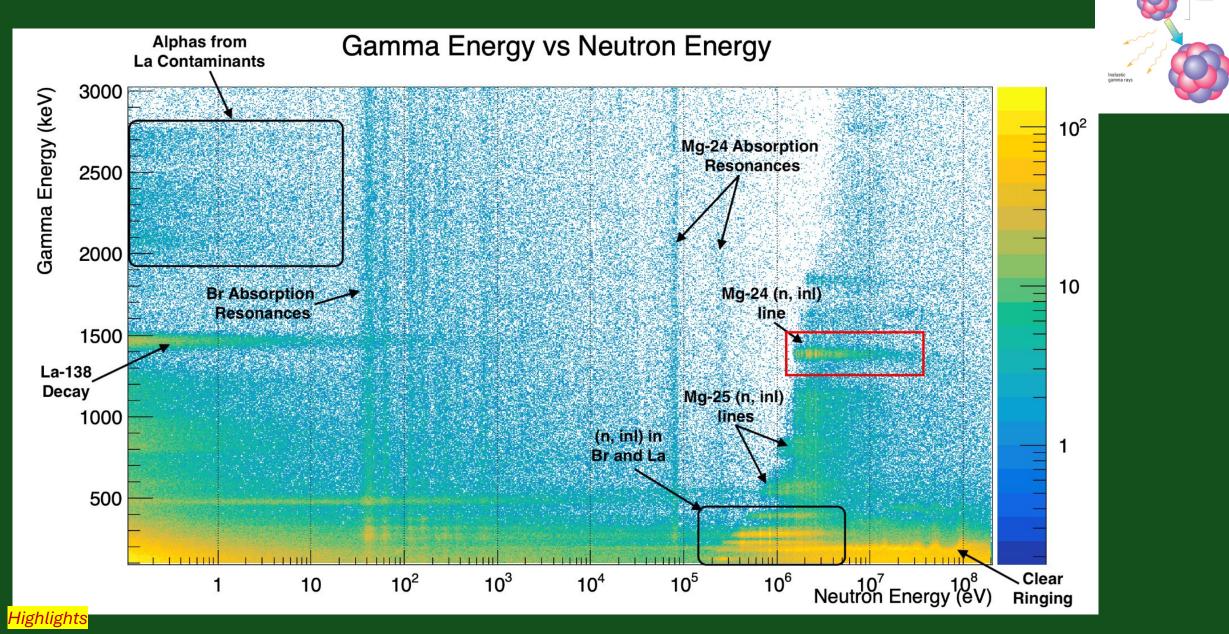

reaction	motivation	Proposal/Lol	EAR
^{28,29,30} Si(n,γ)	isotopic abundances in pre-solar grains nucleosynthesis in massive stars	INTC-P-653	1+2
²⁴ Mg(n,n'γ)	HPGe + LaBr3(Ce) detector test new reaction channel investigations	INTC-I-261	1
Ce(n,f)	search for new fission modes in light systems around Z=60	INTC-P-665	1
^{166,167} Er(n,γ)	burnable neutron absorbers for nuclear technologies	INTC-P-656	1
²⁰⁹ Bi(n,γ)	radiological burden associated to ²¹⁰ Po inventory termination point of the s-process nucleosynthesis	INTC-P-675	2
¹⁴⁶ Nd(n,γ)	s-process nucleosynthesis in AGB stars	INTC-P-671	2
⁸⁸ Zr(n,γ) 🕈	extremely large neutron absorption cross section radioactive sample with t _{1/2} = 83.4 d	INTC-P-693	2
^{92,97,98} Μo(n,γ)	multiple nucleosynthesis processes for different stable isotopes development of nuclear fuel for advanced nuclear reactors	INTC-P-569-ADD-1	1+2
²³⁸ U(n,γ) 😪	key reaction for any nuclear technology applications	INTC-P-672	1
^{63,65} Cu(n,γ)	advanced nuclear technologies applications s-process nucleosynthesis about the iron peak	INTC-P-689	1
⁴⁰ Ar(n,γ)	understanding neutron propagation in argon first capture measurement on a gas sample at n_TOF	INTC-I-256	2
⁴⁰ K(n, p), (n, α)	s-process nucleosynthesis in massive stars	INTC-P-645	2
¹² C(n, lcp)	proton radiation therapy	INTC-P-651	1


Ar(n, γ) With a look towards the future


First measurement on a gas target performed at n_TOF

200 bar Argon gas-cell developed by the n_TOF Collaboration

full operation watched over by CERN safety authorities (including RP)

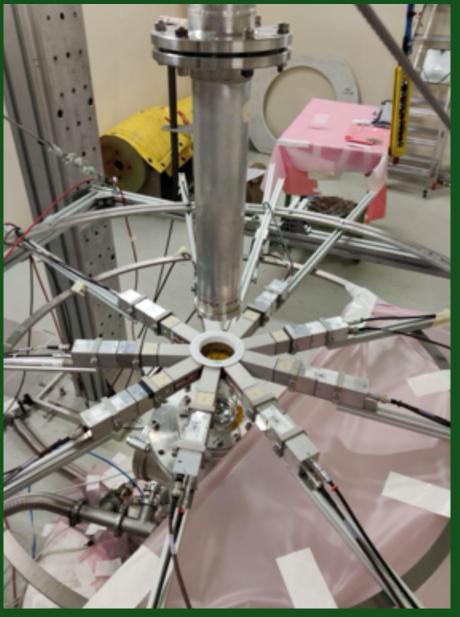


With a look towards the future

(n, n' γ)

⁸⁸Zr(n, γ)

The 'special' run: 16.08 – 11.09


The Physics Case

⁸⁸Zr(n, γ)

- material prepared at Los Alamos
- separated at PSI
- delivered to CERN on 15 August

of atoms : 1.15e16 mass : 1.68 µg activity : 1.1 GBq : ~ 30 mCi

⁸⁸Zr(n, γ)

Highly-radiative sample, half-life of 83 days

Zr 90 Zr 88 89 Zr 1.4E+14 51.45 83.4 d 3.50 78.4 h -Zr-88 -Y-88 -Sr-88 Y-88 -Total -Zr-88 1.2E+14 3.00 β⁺ 0.9 γ (1713 € 7 393 σ~0.014 1507; g 1.0E+14 2.50 µS/hr @ 1m Y 87 Y 88 Y 89 8.0E+13 2.00 atoms 106.6 d 13 h 80.3 h 16.0 s 6.0E+13 1.50 ly 381 er 0.001 B+ 485 1836; 898 ... ly 909 1.25 4.0E+13 1.00 Sr 88 Sr 86 Sr 87 2.0E+13 0.50 9.86 82.58 2.81 h 7.00 1.0E+10 0.00 50 100 150 50 100 150 ly 388 $\sigma 0.81 + 0.23$ σ 0.0058 time (days) time (days) or 16

Decrease of sample mass Vs t

Increase of activity Vs t

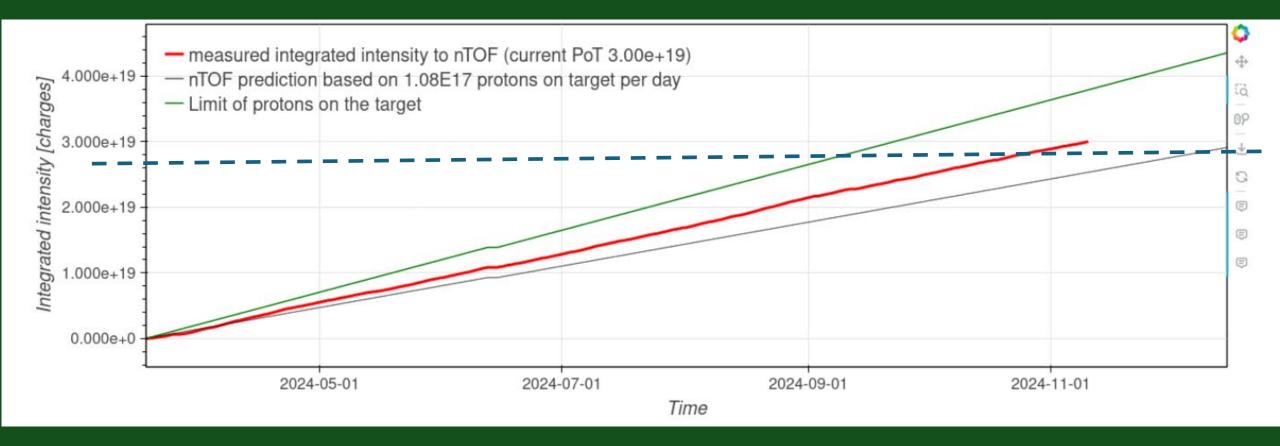
Signal to background ratio (SBR) decreases Vs t

Proposal approved by the INTC, 3.0E18 protons request How to use them?

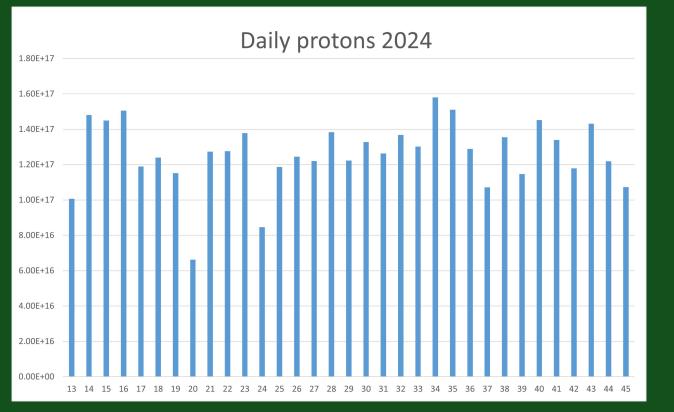
SBR ≈ 1

At day 1, **signal well above the background** At day 20, with the 'special' PS delivery of **1.5e17 p/d**, 50% more, wrt to "nominal flux" of 1.08e17 p/d

Thanks to


Dedicated bunches 850E10 → 1000E10

Parasitic bunches 350E10 → 800E10


⁸⁸Zr(n, γ)

Status on 10.11 (3.00E19 Vs 2.65E19, +20% PoT)



https://bpt.web.cern.ch/ps/TOF/2024/

The protons bargain

Protons (10E17)	EAR1 (10E17 p)
Residual of already approved by the INTC (End of 2024)	293
Submitted Nov 24 INTC	109
Residual + Submitted	402

20/02 → 31/08

192 days

19/03 → 8/12

264 days

New proposals

The neutron capture cross section of ¹²⁴Sn and its impact on neutrinoless double β decay searches Speakers: Aman GANDHI, Mariam Alexandru BOROMIZA

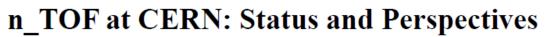
(Horia Hulubei National Institute of Physics and Nuclear Engineering (RO))

Fast neutrons inelastic cross section on Si for space applications and fundamental research Speaker: Cristina PETRONE (Horia Hulubei National Institute of Physics and Nuclear Engineering (RO))

Measurement of the neutron capture cross section of ⁸⁷Sr Speakers: Frank GUNSING (Université Paris-Saclay (FR)) and Emilio MAUGERI (Paul Scherrer Institute (CH))

New high-resolution measurement of ⁵⁶Fe(n, γ) at n_TOF-EAR1 for Nuclear Astrophysics and Nuclear Technology Speaker: Adria CASANOVAS-HOSTE (Universitat Politecnica Catalunya (ES))

Measurement of the inelastic scattering cross section of neutrons on F by γ -ray spectroscopy


Speakers: Giuseppe LORUSSO (Nuclear Physics Laboratory, Teddington (GB)) and Michael BACAK, Tobias WRIGHT (The University of Manchester (GB))

Addendum

Measurement of (n,cp) reactions in EAR1 using an enhanced experimental setup Speaker: Styliani Goula (University of Ioannina (GR))

facilities and methods

https://doi.org/10.1080/10619127.2024.2376484

Paper in preparation for a special issue on Universe

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Expression of Interest to the SPS and PS Experiments Committee

Neutron Activation Station at the SPS Beam Dump Facility (BDF)

October 18, 2024

Eol to SPSC

PHYSICAL REVIEW LETTERS 133, 052702 (2024)

Shedding Light on the Origin of ²⁰⁴Pb, the Heaviest *s*-Process–Only Isotope in the Solar System

A. Casanovas-Hoste⁽⁰⁾, ^{1,2,3,*} C. Domingo-Pardo,² J. Lerendegui-Marco,⁴ C. Guerrero,⁴ A. Tarifeño-Saldivia,² M. Krtička,⁵ M. Pignatari,^{6,7,8,9} F. Calviño,¹ D. Schumann,¹⁰ S. Heinitz,¹⁰ R. Dressler,¹⁰ U. Köster,¹¹ O. Aberle,³ J. Andrzejewski,¹² L. Audouin,¹³ V. Bécares,¹⁴ M. Bacak,¹⁵ J. Balibrea-Correa,¹⁴ M. Barbagallo,¹⁶ S. Barros,¹⁷ F. Bečvář,⁵ C. Beinrucker,¹⁸ E. Berthoumieux,¹⁹ J. Billowes,²⁰ D. Bosnar,²¹ M. Brugger,³ M. Caamaño,²² M. Calviani,³ D. Cano-Ott,¹⁴ R. Cardella,³ D. M. Castelluccio,^{23,24} F. Cerutti,³ Y. H. Chen,¹³ E. Chiaveri,³ N. Colonna,¹⁶ G. Cortés,¹ M. A. Cortés-Giraldo,⁴ L. Cosentino,²⁵ L. A. Damone,^{16,26} M. Diakaki,¹⁹ E. Dupont,¹⁹ I. Durán,²² B. Fernández-Domínguez,²² A. Ferrari,³ P. Ferreira,¹⁷ P. Finocchiaro,²⁵ V. Furman,²⁷ K. Göbel,¹⁸ A. R. García,¹⁴ A. Gawlik-Ramiega,¹² T. Glodariu,^{28,†}
I. F. Gonçalves,¹⁷ E. González-Romero,¹⁴ A. Goverdovski,²⁹ E. Griesmayer,¹⁵ F. Gunsing,^{19,3} H. Harada,³⁰ T. Heftrich,¹⁸ J. Heyse,³¹ D. G. Jenkins,³² E. Jericha,¹⁵ F. Käppeler,^{33,†} Y. Kadi,³ T. Katabuchi,³⁴ P. Kavrigin,¹⁵ V. Ketlerov,²⁹ V. Khryachkov,²⁹ A. Kimura,³⁰ N. Kivel,¹⁰ M. Kokkoris,³⁵ E. Leal-Cidoncha,²² C. Lederer-Woods,³⁶ H. Leeb,¹⁵ S. Lo Meo,^{23,24} S. J. Lonsdale,³⁶ R. Losito,³ D. Macina,³ J. Marganiec,¹² T. Martínez,¹⁴ C. Massimi,^{24,37} P. Mastinu,³⁸ M. Mastromarco,¹⁶ F. Matteucci,^{39,40} E. A. Maugeri,¹⁰ E. Mendoza,¹⁴ A. Oprea,²⁸ N. Patronis,⁴³ A. Pavlik,⁴⁴ J. Perkowski,¹² I. Porras,^{3,45} J. Praena,^{4,45} J. M. Quesada,⁴ K. Rajeev,⁴⁶ T. Rauscher,^{47,48} R. Reifarth,¹⁸ A. Riego-Perez,⁴⁹ Y. Romanets,¹⁷ P. C. Rout,⁴⁶ C. Rubbia,³ J. A. Ryan,²⁰ M. Sabaté-Gilarte,^{3,4} A. Saxena,⁴⁶ P. Schillebeeckx,³¹ S. Schmidt,¹⁸ P. Sedyshev,²⁷ A. G. Smith,²⁰ A. Stamatopoulos,³⁵ G. Tagliente,¹⁶ J. L. Tain,² L. Tassan-Got,¹³ A. Tsinganis,³⁵ S. Valenta,⁵ G. Vannini,^{24,37} V. Variale,¹⁶

(n_TOF Collaboration)

https://doi.org/10.1103/PhysRevLett.133.052702

Full list of n_TOF publications: https://twiki.cern.ch/NTOFPublic/ListOfPublications

Conclusions

Excellent year

13 experiments performed [9 (n, γ), 1 (n, f), 2 (n, lcp), 1 (n, n' γ)]

Road to new measurements successfully paved (gas samples, inelastic scattering, high radioactivity sample...)

Several detector developments

Significant increase of proton beam intensity

+20% of protons received wrt what expected

Daily brainstorming

