β decay studies of neutron-deficient gallium isotopes with Lucrecia

INTC-P-718

in the framework of

LOI259

Víctor Guadilla

Faculty of Physics, University of Warsaw

Víctor Guadilla

Proposal to the INTC

12/11/2024 1/15

Superallowed transitions crucial for electroweak interaction

= nan

Image: A Image: A

Superallowed transitions crucial for electroweak interaction

- Test the conservation of weak vector current (CVC)
- Test CKM unitarity: $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$?

 ${\hookrightarrow} 2\sigma$ tension with the standard model

A. Falkowski et al., EPJA 59, 113 (2023)

< 3 > < 3 >

Superallowed transitions crucial for electroweak interaction

- Test the conservation of weak vector current (CVC)
- Test CKM unitarity: $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$?

 $\hookrightarrow 2\sigma \text{ tension with the standard model}$ A. Falkowski et al., EPJA 59, 113 (2023)

• ft values \rightarrow corrected $\mathcal{F}t$ value:

$$\mathcal{F}t = ft(1+\delta'_R)(1+\delta_{NS}-\delta_C) \propto G_V^{-2}$$

イヨト イヨト

Superallowed transitions crucial for electroweak interaction

- Test the conservation of weak vector current (CVC)
- Test CKM unitarity: $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$?

 $\hookrightarrow 2\sigma$ tension with the standard model A. Falkowski et al., EPJA 59, 113 (2023)

• ft values \rightarrow corrected $\mathcal{F}t$ value: $\mathcal{F}t = ft(1 + \delta_R')(1 + \delta_{NS} - \delta_C) \propto G_V^{-2}$

• Experimental ingredients:

$$f(Q_eta,Z)$$
 and $t=rac{T_{1/2}(1+P_{EC})}{I_eta^{super}}$

Superallowed transitions crucial for electroweak interaction

- Test the conservation of weak vector current (CVC)
- Test CKM unitarity: $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$?

 $\hookrightarrow 2\sigma$ tension with the standard model A. Falkowski et al., EPJA 59, 113 (2023)

• ft values \rightarrow corrected $\mathcal{F}t$ value: $\mathcal{F}t = ft(1 + \delta_R')(1 + \delta_{NS} - \delta_C) \propto G_V^{-2}$

• Experimental ingredients:

$$f(m{Q}_eta,Z)$$
 and $t=rac{T_{1/2}(1+P_{EC})}{I^{super}_eta}$

• Theoretical ingredients: δ_C + radiative corrections.

A B A B A B A B B A A A B A

Conserved Vector Current hypothesis \rightarrow constrain different models:

Shell model, Hartree-Fock, density functional theory, random phase approximation, isovector monopole-resonance model, ab initio

3 40 .		\sim	
VIC	tor		Ia
	.01		

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
Physics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

β decay for nuclear astrophysics and nuclear structure

- ${\, \bullet \,}$ rp-process path close to the $^{60}{\rm Zn}$ waiting point
- Information about low-spin states in the daughter zinc isotopes
- Role of $1g_{9/2}$ orbital
- $\bullet~\mbox{Recent}$ study of $^{64,66}\mbox{Ga}$ at ISOLDE with Lucrecia

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
Physics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

β decay for nuclear astrophysics and nuclear structure

- ${\, \bullet \,}$ rp-process path close to the $^{60}{\rm Zn}$ waiting point
- Information about low-spin states in the daughter zinc isotopes
- Role of $1g_{9/2}$ orbital
- ${\ensuremath{\, \bullet }}$ Recent study of ${}^{64,66}\mbox{Ga}$ at ISOLDE with Lucrecia

63 Ga

- \bullet Known β feeding up to 1691.62 keV.
- Over 60 levels observed in 64 Zn(d,t) 63 Zn.

K.G. Leach et al., PRC 87, 064306 (2013)

$$Q_{EC}{=}5666.3(20)$$
 keV
 $T_{1/2}{=}32.1(5)$ s
 $I_{\beta}^{g.s.}{=}{<}54\%$

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
Physics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

N. Severijns et al., PRC 107, 015502 (2023)

 $Q_{EC} = 9214(38) \text{ keV}$

 $T_{1/2} {=} 166(3) \text{ ms}$

 $I_{\beta}^{super}=94(1)\%$

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
hysics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

 $Q_{EC}=$ 9235(20) keV $T_{1/2}=$ 166(3) ms $I_{\beta}^{super}=$ 94(1)%

N. Severijns et al., PRC 107, 015502 (2023)

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
Physics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

$Q_{EC}=$ 9235(20) keV $T_{1/2}=$ 166(3) ms $I_{eta}^{super}=$ 94(1)%

N. Severijns et al., PRC 107, 015502 (2023)

• ISOLDE: β feeding up to 938 keV excitation energy in ⁶¹Zn.

L. Weissman et al., PRC 65, 044321 (2002)

	61Ga	62Ga	63Ga	64Ga	65Ga	66Ga
	166 ms	116.123 ms	32.1 s	2.627 min	15.134 min	9.304 h
Physics cases	ε+β+=100% εp<0.25%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%	ε+β+=100%

$Q_{EC}=$ 9235(20) keV $T_{1/2}=$ 166(3) ms $I_{eta}^{super}=$ 94(1)%

N. Severijns et al., PRC 107, 015502 (2023)

• ISOLDE: β feeding up to 938 keV excitation energy in ⁶¹Zn.

L. Weissman et al., PRC 65, 044321 (2002)

• 200 states predicted up to S_p (5293(16) keV).

S. Goriely et al., PRC 78, 064307 (2008)

Víctor Guadilla

三日 のへの

A B < A B </p>

< 1[™] >

三日 のへの

A E > A E >

< 4 ► .

• Non-analog Fermi decay to 0⁺ states: three 0⁺ excited states observed in 64 Zn(p,t) 62 Zn but not in β decay

K.G. Leach et al., PRC 88, 031306(R) (2013)

• Non-analog Fermi decay to 0⁺ states: three 0⁺ excited states observed in 64 Zn(p,t) 62 Zn but not in β decay

K.G. Leach et al., PRC 88, 031306(R) (2013)

• Shell model calculations predict more than 100 1^+ states in 62 Zn within Q_{EC} , only 17 found experimentally.

A.D. MacLean et al., PRC 102, 054325 (2020)

Víctor Guadilla

Physics cases

• Increasing A: large amount states fed by numerous Gamow-Teller transitions \Rightarrow possible **Pandemonium**

Physics cases

• Increasing *A*: large amount states fed by numerous Gamow-Teller transitions ⇒ possible **Pandemonium**

• Ground state feeding determination in high-resolution γ -spectroscopy:

$$I_{\beta}^{g.s.} = 1 - I_{\beta\gamma}$$

Víctor Guadilla

Physics cases

Proposal to the INTC

▲ E ▶ E = 少へで 12/11/2024 8/15

Proposed technique

Total Absorption γ -Ray Spectroscopy (TAGS)

J. L. Tain and D. Cano-Ott, NIMA (2007)

Pandemonium free technique: **complete** I_{β} distributions

S 44	· · · · ·
Mictor (-updulla
VILLUI V	JUJUBU

Proposed technique

Ground state feeding determination with a TAS detector

V. Guadilla, Front. Phys. 12, 1452988 (2024)

ELE NOR

Image: A mathematical states and a mathem

Ground state feeding determination with a TAS detector

V. Guadilla, Front. Phys. 12, 1452988 (2024)

• TAGS technique naturally gives a value due to the β penetration!

 $I^{g.s.}_{\beta}$ value: 93.3(1)% ENSDF 93.9(5)% TAGS

V. Guadilla et al., PRC 96, 014319 (2017)

Ground state feeding determination with a TAS detector

V. Guadilla, Front. Phys. 12, 1452988 (2024)

• TAGS technique naturally gives a value due to the β penetration!

• Counting method: R.C. Greenwood et al., NIMA 317, 175 (1992)

Ground state feeding determination with a TAS detector

V. Guadilla, Front. Phys. 12, 1452988 (2024)

• TAGS technique naturally gives a value due to the β penetration!

• Counting method: R.C. Greenwood et al., NIMA 317, 175 (1992)

• Recently revised: $4\pi\gamma - \beta$

ratio $N_{\beta\gamma}/N_{\beta}$ (exp.) + ratios of β efficiencies (MC)

V. Guadilla et al., PRC 102, 064304 (2020)

Víctor Guadilla

Proposed experimental setup

• LUCRECIA: Nal(TI) spectrometer

B. Rubio et al., J. Phys. G: Nucl. Part. Phys. 44, 084004 (2017)

- $\bullet\,$ Total efficiency ${\sim}90\%$
- Coincidences β - γ
- Movable tape for implantation and removal of the activity

Beam time request (+ TAC's comments)

ZrO_2 felt target + RILIS

U. Köster et al., NIMB 204, 303 (2003)

12/11/2024 12/15

-

Beam time request (+ TAC's comments)

 ZrO_2 felt target + RILIS

U. Köster et al., NIMB 204, 303 (2003)

TAC recommendation

"The TAC notes that while the yields were achievable in the past, there is no guarantee they can be reproduced. What are the minimum required yields for the experiment to remain feasible?"

Nucleus	$Yield/\muC$	Shifts	Statistics	Minimum
			(TAS)	yield/ μ C
^{61}Ga	10	14	1×10^{6}	
^{62}Ga	4000	2.5	70×10^{6}	
^{63}Ga	1.2×10^{6}	0.5	70×10^{6}	

Assumptions:

- \star Average intensity 1.6 $\mu {\rm A}$
- \star 70% transmission to Lucrecia.
- \star Total γ and β detection efficiencies 80% and 40%, respectively.
- * Negligible contribution of descendants.

Nucleus	$Yield/\muC$	Shifts	Statistics	Minimum	-
			(TAS)	yield/ μ C	
^{61}Ga	10	14	1×10^{6}	10	-
^{62}Ga	4000	2.5	70×10^{6}	1000 ↑	shifts
^{63}Ga	1.2×10^{6}	0.5	70×10^{6}	5000	

Assumptions:

- \star Average intensity 1.6 μ A
- \star 70% transmission to Lucrecia.
- \star Total γ and β detection efficiencies 80% and 40%, respectively.
- * Negligible contribution of descendants.

Collaboration

V. Guadilla¹, J. Agramunt², A. Algora², M. Araszkiewicz¹, M. Au³, C. Bernerd³, J.A. Briz⁴, K. Chrysalidis³, A. Fijałkowska¹, L.M. Fraile⁴, E. Ganioğlu⁵,
W. Gelletly⁶, R. Heinke³, M. Karny¹, A. Korgul¹, K. Miernik¹, M. Młynarczyk¹,
F. Molina⁷, E. Nácher², S.E.A. Orrigo², B.M. Rebeiro⁸, S. Rothe³, B. Rubio²,
W. Satuła¹, K. Solak¹, S. Stegemann³, J.L. Tain², J.C. Thomas⁸, P. Wakuluk¹,
S. Zajda¹

¹ Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
 ² Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
 ³ ISOLDE, CERN, CH-1211 Geneva 23, Switzerland
 ⁴ Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, E-28040, Spain
 ⁵ Department of Physics, Istanbul University, 34134, Istanbul, Turkey
 ⁶ Department of Physics, University of Surrey, GU2 7XH, Guildford, UK
 ⁷ Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
 ⁸ GANIL, CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, Caen, France

Thank you very much for your attention!

MC response

Beam time request

Beam time request

