Laser spectroscopy of neutron-rich Ni with PI-LIST

Spokespersons:

Jordan Reilly (CERN)

Michail Athanasakis-Kaklamanakis (Imperial College London)

Introduction

- Closed proton shell (Z = 28)
- Z > 28 extensively studied with laser spectroscopy
- ^{54-68,70}Ni studied previously
- Expand online PI-LIST into the medium-mass region

[1] N. Aoi et al., Enhanced collectivity in 74ni. Physics Letters B,692(5):302–306, September 2010.

[2] O. Perru et al., Enhanced core polarization in 70Ni and 74Zn.Phys. Rev. Lett., 96:232501, Jun 2006.

[3] T. Marchi et al., Quadrupole transition strength in the 74Ni nucleus and core polarization effects in the neutron-rich Ni isotopes. Phys. Rev. Lett., 113:182501, Oct 2014.

Motivation: N = 40 Island of inversion

- E(2⁺) indicate re-emergence of *N* = 40 sub-shell closure in Ni
- ⁶⁴Cr marks the heart of the IoI, 4 protons from Ni [2]
- As $\pi 1 f_{7/2}$ is populated, N = 40 energy gap narrows
- Promotes np-nh excitations, causing intruder-dominated configurations
- Reflected in $\delta \langle r^2 \rangle^{A,A'}$, Q_s and μ
- To conclusively exclude Ni from N = 40 IoI, $\delta \langle r^2 \rangle^{A,A'}$, μ and Q_s are required

[1] J.G. Li. Merging of the island of inversion at n=40 and n=50. Physics Letters B,840:137893, 2023.
 [2] L. Lalanne et al., ⁶¹Cr as a door-way to the n = 40 island of inversion, 2024.

P. Muller et al., electromagnetic moments of the odd-mass nickel isotopes 59-67ni. Physics Letters B, 854:138737, 2024.
 S. Malbrunot-Ettenauer et al., nuclear charge radii of the nickel isotopes 58–68,70Ni. Phys. Rev. Lett., 128:022502, Jan 2022.

[3] C. Wraith et al., Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers. Physics Letters B, 771:385–391, 2017.

Previous measurements

- Laser spectroscopy of Ni previously performed @ COLLAPS [1, 2]
- $\delta \langle r^2 \rangle^{A,A'}$ measured for ^{58-68,70}Ni [2]
- μ and Q_s measured up to ⁶⁷Ni [1]
- Neighbouring elements also studied: Fe, Zn, Ge
- Zn deviates from the expected $1g_{9/2}$ SP g-factor at N = 41, 43 [3]
- Neutron hole in the $2p_{1/2}$ orbital at N = 41, 43
- Conventional shell filling resumes at N = 49 in Zn

Proposal

- 24 shifts for high-resolution laser spectroscopy on ⁶⁹⁻⁷⁴Ni
- Lightest mass used online for PI-LIST
- Confirm tentative spins (I^{π}) of ^{69,71,73}Ni
- Confirm level ordering of <u>I = 9/2, 1/2</u> in ^{69,71}Ni with laser spectroscopy
- Benchmark PI-LIST against lit. values for ⁷⁰Ni
- Extend $\delta \langle r^2 \rangle^{A,A'}$ up to N = 46
- Extend μ and Q_s up to N = 45
- Simultaneous decay data on ⁷⁴Ni at IDS
- Reaffirm mass measurements of ⁷⁴Ni at ISOLTRAP

Isotope	<i>t</i> _{1/2}	Yields (ions/µC) Shifts		New Measurements	
⁶⁶ Ni	54.6 hr	$1 \times 10^{6} / 3 \times 10^{5}$	3	Ref. Measurement	
⁶⁹ Ni/ ^{69m} Ni*	11.4 s / 3.5 s	$2 \times 10^{2} / 7 \times 10^{1} 2 \times 10^{1} / 7^{*}$	2	I, δ $\langle r^2 \rangle^{A,A'} \mu$, Q_s	
⁷⁰ Ni	6.0 s	$1 \times 10^2 / 3 \times 10^1$	1	Ref. Measurement	
⁷¹ Ni/ ^{71m} Ni**	2.6 s / 2.3 s	$\begin{array}{l} 4 \ \times \ 10^1 \ /1 \ \times \ 10^1 \\ 4 \ / \ 1^{**} \end{array}$	4	I, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s	
⁷² Ni	1.8 s	$1 \times 10^{1} / 3$	2	$\delta \langle r^2 angle^{A,A'}$	
⁷³ Ni	0.8 s	0.5 / 0.1	6	I, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s	
⁷⁴ Ni	0.5 s	0.1	4	$\delta \langle r^2 angle^{A,A'}$	
Tuning/Optimization			2		
Total			24		

Technical Details: PI-LIST

- 10⁴:1 ratio of ⁷⁰Ga:⁷⁰Ni, major obstacle in the past
- LIST $\rightarrow x10^6$ surface ion suppression, sacrifice $x10^2$ ion of interest
- New 10-kHz fast-switching beam gates allow for laser-ion time-of-flight gating and further suppression
- TAC confirmed this is a well-established beam

Tab

	Operation mode	Mode loss factor	Combined loss factor	Est. total efficiency (%)
- from [1]	Standard RILIS LIST ion guide	3	3	10 3.3
	LIST high purity	33	100	0.1
	PI-LIST	2	200	0.05
	PI-LIST opt.	10	2000	0.005

[1] R. Heinke et al., high-resolution in-source laser spectroscopy in perpendicular geometry: Development and application of the pi-list. Hyperfine Interactions, 238, 12 2016.

Technical Details: Laser Ionization Scheme

- Even-A isotopes can be converted back to <u>"higher production"</u> mode or even <u>lon guide collinear LIST</u> mode
- This comes with a sacrifice in resolution $\frac{62\ 694.07\ cm^{-1}}{62\ 521.54\ cm^{-1}}$
- Spectroscopy transition with known HFS parameters
- New laser ionization scheme is at least 49 271.540 cm¹ as efficient as the production scheme
- 1st step used previously in laser spectroscopy at ISOLDE

Gallium	⁶⁶ Ga	⁶⁷ Ga	⁶⁸ Ga	⁶⁹ Ga	⁷⁰ Ga	⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁶ Gа	⁷⁷ Ga	⁷⁸ Ga
Z=31	_{9.304 h}	^{78.2808 h}	_{67.842 m}	_{Stable}	_{21.14 m}	_{Stable}	^{14.025 h}	^{4.86 h}	_{8.12 m}	_{126 s}	_{30.6 s}	^{13.2 s}	_{5.09 s}
Nickel	⁶⁶ Ni	⁶⁷ Ni	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	71 Ni	72 <mark>Ni</mark>	⁷³ Ni	⁷⁴ Ni	75 <mark>Ni</mark>	76 <mark>Ni</mark>	77 <mark>Ni</mark>	⁷⁸ Ni
Z=28	^{54.6 h}	^{21 s}	^{29 s}	_{11.4 s}	_{6 s}	2.56 s	1.57 s	^{840 ms}	^{507.7 ms}	331.6 ms	234.6 ms	158.9 ms	122.2 ms

Technical Details: IDS and ISOLTRAP

- IDS: main element of detection
- $t_{1/2}$ (Ga) >> $t_{1/2}$ (Ni), mostly filtered by tape movement
- Decay data on ^{69m, 71m}Ni is sparse
- No decay data available for $A \ge {}^{74}Ni$
- Mass measurements of ^{74,75}Ni @ IGISOL (2022) – Reaffirm values
- Ion detection with ISOLTRAP MR-ToF
- Revert to high-production collinear LIST for decay or mass measurements
- Well-established method due to strong RILIS + IDS + ISOLTRAP technique!

Isomer & G.S. Separation in a single scan!

Instant Switching between high production and high resolution!

Conclusion

- The Z = 28, N = 40-50 region is rich with nuclear structure
- High-resolution laser spectroscopy performed with PI-LIST + IDS
- LIST is the ideal candidate to overcome the overwhelming Ga contamination
- New measurements on μ , Q_s , $\delta \langle r^2 \rangle^{A,A'}$ and I on ^{69, 71-74}Ni and ^{69m, 71m}Ni.
- Measurement that will help clarify the evolution of nuclear structure leading to ⁷⁸Ni
- Free additional decay spectroscopy data on ⁷⁴Ni
- Instant switching between higher-resolution and higherefficiency
- Lightest online medium mass measurements using PI-LIST, opening doors for other medium-mass elements

Isotope	t _{1/2}	Yields (ions/µC)	Shifts	New Measurements
⁶⁶ Ni	54.6 hr	$1 \times 10^{6} / 3 \times 10^{5}$	3	Ref. Measurement
⁶⁹ Ni/ ^{69m} Ni*	11.4 s / 3.5 s	$\begin{array}{c} 2 \times 10^2 / 7 \times 10^1 \\ 2 \times 10^1 / 7^* \end{array}$	2	I, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s
⁷⁰ Ni	6.0 s	$1 \times 10^2 / 3 \times 10^1$	1	Ref. Measurement
⁷¹ Ni/ ^{71m} Ni**	2.6 s / 2.3 s	$4 \times 10^{1}/1 \times 10^{1}$ $4/1^{**}$	4	I, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s
⁷² Ni	1.8 s	$1 \times 10^{1} / 3$	2	$\delta \langle r^2 angle^{A,A'}$
⁷³ Ni	0.8 s	0.5 / 0.1	6	Ι, δ $\langle r^2 angle^{A,A'}$ μ, Q_s
⁷⁴ Ni	0.5 s	0.1	4	$\delta \langle r^2 angle^{A,A'}$
Tuning/Optimiz ation			2	
Total			24	

Thank you!

Questions?

J. R. Reilly¹, M. Athanasakis-Kaklamanakis², M. Araszkiewicz³, K. Chrysalidis¹, A. Ajayakumar¹, A. N. Andreyev⁴, M. Au¹, C. Bernerd¹, J. G. Cubiss^{4,5}, L. M. Fraile⁶, M. J. G. Borge⁷, P. Garczynski³, G. Georgiev⁸, P. F. Giesel⁹, R. de Groote¹⁰, R. Grzywacz¹¹, R. Heinke^{12,1}, M. Karny³, A. Koszorus¹⁰, R. Kuczma³, L. Lalanne¹³, D. Lange¹⁴, K. M. Lynch¹², D. McElroy¹², M. M lynarczyk³, L. Nies¹, F. Nowacki¹³, B. Olaizola⁷, S. Rothe¹, C. Schweiger¹⁴, A. I. Sison⁶, K. Solak³, K. Stoychev¹⁵, R. Taniuchi⁴, B. van den Borne¹⁰, P. Wakuluk³, J. Warbinek¹⁶, J. Wessolek^{1,12}, J. Wilson⁴, S. Zajda³

¹Systems Department, CERN, CH-1211 Geneva 23, Switzerland ²Centre for Cold Matter, Imperial College London, SW7 2AZ London, United Kingdom ³Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland ⁴School of Physics, Engineering and Technology, University of York, YO10 5DD, UnitedKingdom ⁵School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United King-dom ⁶Grupo de Fisica Nuclear & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain ⁷Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain ⁸IJCLab, IN2P3/CNRS, and Universite Paris-Saclay, F-91405 Orsay Campus, France ⁹Institut fur Physik, Universitat Greifswald, D-17487 Greifswald, Germany ¹⁰KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium ¹¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ¹²School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom ¹³Universit² e de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ¹⁴Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany ¹⁵Department of Physics, University of Guelph, Guelph, Ontario N1G2W1, Canada ¹⁶Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland

Conclusion

- The *Z* = 28, *N* = 40-50 region is rich with nuclear structure
- High-resolution laser spectroscopy performed with PI-LIST + IDS
- LIST is the ideal candidate to overcome the overwhelming Ga contamination
- New measurements on μ , Q_s , $\delta \langle r^2 \rangle^{A,A'}$ and I on ^{69, 71-} ⁷⁴Ni and ^{69m, 71m}Ni.
- Measurement that will help clarify the evolution of nuclear structure leading to ⁷⁸Ni
- Free additional decay spectroscopy data on ⁷⁴Ni
- Lightest online medium mass measurements using PI-LIST, opening doors for other medium-mass elements

Isotope	t _{1/2}	Yields (ions/µC)	Shifts	New Measurements
⁶⁶ Ni	54.6 hr	$1 \times 10^{6} / 3 \times 10^{5}$	3	Ref. Measurement
⁶⁹ Ni/ ^{69m} Ni*	11.4 s / 3.5 s	$\begin{array}{c} 2 \times 10^2 / 7 \times 10^1 \\ 2 \times 10^1 / 7^* \end{array}$	2	I, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s
⁷⁰ Ni	6.0 s	$1 \times 10^2 / 3 \times 10^1$	1	Ref. Measurement
⁷¹ Ni/ ^{71m} Ni**	2.6 s / 2.3 s	$4 \times 10^{1}/1 \times 10^{1}$ $4/1^{**}$	4	Ι, δ $\langle r^2 \rangle^{A,A'}$ μ, Q_s
⁷² Ni	1.8 s	$1 \times 10^{1} / 3$	2	$\delta \langle r^2 angle^{A,A'}$
⁷³ Ni	0.8 s	0.5 / 0.1	6	Ι, δ $\langle r^2 angle^{A,A'}$ μ, Q_s
⁷⁴ Ni	0.5 s	0.1	4	$\delta \langle r^2 angle^{A,A'}$
Tuning/Optimiz ation			2	
Total			24	

Back-up:

Doubly magic ⁷⁸Ni

[1] S. Giraud Mass measurements towards doubly magic 78ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae. Physics Letters B, 833:137309, 07 2022.

- E(2⁺) values indicate strong shell closures at N = 40, 50
- Reinforced by Δ_{2n} , increasing trend towards N = 50 for Z = 28-38 [1]
- A kink in $t_{1/2}$ is also observed at ⁷⁸Ni: 122.2(51) ms
- Consistent with double magicity at Z = 28, N = 50
- Measurements of $\delta \langle r^2 \rangle^{A,A'}$, μ and Q_s allow the study of the evolution of the single-particle nature between N = 40-50

14

Back-up: Shape Coexistence near ⁷⁸Ni

[1] X. F. Yang Isomer Shift and Magnetic Moment of the Long-Lived 1/2+ Isomer in 3079Zn49: Signature of ShapeCoexistence near 78Ni. Physical Review Letters, 116(18):182502, 5 2016.

[2] A. Gottardo irst Evidence of Shape Coexistence in the Ni 78 Region:Intruder 02+ State in Ge 80. Physical Review Letters, 116(18), 5 2016.

[3] R. Taniuchi et al., ⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation. Nature, 569(7754):53–58, 5 2019.

- Isomeric states in ⁷⁹Zn [1] and ⁸⁰Ge [2] question the doubly magic nature of ⁷⁸Ni
- N = 50 weakening, minimum indicated at Z = 34
- $v(3s_{1/2})$ in 2p-2h excitations
- Zn: $\delta \langle r^2 \rangle^{79,79m} = 0.204(6) \text{ fm}^2$
- β_2 (⁷⁹Zn) = 0.15, β_2 (^{79m}Zn) = 0.22
- Prolate deformed 2⁺ state in ⁷⁸Ni [3]
- Indicator of shape coexistence near ⁷⁸Ni

Back-up: Laser Spectroscopy

Laser spectroscopy provides access to:

• Nuclear spin (I)

Oblate

(B<0)

- Magnetic dipole moment (μ)
- Electric quadrupole moment (Q_s) $B_{\rm HFS} = eQ_s \left(\frac{\delta^2 V_e}{\delta z^2}\right)$
- Change in mean-square charge radii ($\delta \langle r^2 \rangle^{A,A'}$)

67

 $A_{\rm HFS} = \frac{\mu B_e(0)}{II}$

$$\boldsymbol{B}_{\rm HFS} = \boldsymbol{e}\boldsymbol{Q}_{\boldsymbol{s}} \left| \frac{\boldsymbol{\delta}^2 \boldsymbol{V}_{\boldsymbol{e}}}{\boldsymbol{\delta}\boldsymbol{z}^2} \right|$$

Back-up: 69mNi and 71mNi

- Discovery of ^{69m, 71m}Ni
- Decay paths in Cu populate states with varying characteristics
- 1298 keV transition in ⁶⁹Cu has a B(E2) value of 1.4 W.u
- 454 keV transition in ⁷⁰Cu has a B(E2) value of 20.4(22)
- Increasing population of the $g_{9/2}$ orbital
- $\delta \langle r^2 \rangle^{A,A'}$ and μ would provide insight into the level of deformation compared to G.S. and make critical information about the configuration mixing

Back-up: $9/2^{-1}$ and $1/2^{-1}$ level inversion

- Occupation across the Z = 28 closure corresponds to an enhancement in the charge radii
- $I(^{71,73}Zn) = \frac{1}{2}$
- $I(^{71m}Zn) = \frac{9}{2}$

Back-up Slides

- LEFT: ⁶⁹Ni
- RIGHT: ^{69m}Ni

Back-up Slides

- LEFT: ⁷¹Ni
- RIGHT: ^{71m}Ni

Back-up Slides

COLLAPS μ values

Back-up Slides

 γ – efficiency curve from recent Hg (Oct 2024) run at IDS

Back-up Slides

Simulated Spectrum

