Laser spectroscopy of neutron-deficient thulium isotopes **INTC-P-673-ADD-1**

Optical measurements, including Tm isotopes measured at ISOLDE so far

Bradley Cheal, Spokesperson

Co-Spokespersons: Liss Vazquez Rodriguez, Reinhard Heinke

Hf155 0.89 s	Hf156 25 ms	Hf157 110 ms	Hf158 2.86 s	Hf159 5.6 s	Hf160 13.0 s	Hf161 16.8 s	Hf162 37.6 s
	0+ *		0+		0+	(13/2+)	0+
EC,α	α	ΕС,α	ΕС,α	EC,α	ΕС,α	EC,α	ΕС,α
Lu154	Lu155	Lu156	Lu157	Lu158	Lu159	Lu160	Lu161
1.12 s (7+)	(1/2+,3/2+)	0.5 s	7.4 s (1/2+,3/2+)	10.4 s	12.1 \$	30.1 s	(5/2+)
EC	*	* ΕC,α	* α	EC,α	ΕС,α	* ΕC,α	EC
Yb153	Yb154	Yb155	Yb156	Yb157	Yb158	Yb159	Yb160
4.2 s 7/2-	0.404 s 0+	(7/2-)	20.1 s 0+	7/2-	0+	5/2(-)	4.0 m 0+
EC,α	ΕС,α 🖌	EC ,α 🖌	ΕС,α 🖌	ΕС,α 🖌	ΕС,α 🖌	EC 🗸	EC 🖌
Tm152	Tm153	Tm154	Tm155	Tm156	Tm157	Tm158	Tm159
5.2 s (9+)	1.48 s (11/2-)	8.1 s (2-)	21.6 s (11/2-)	83.8 s 2-	3.63 m 1/2+	3.98 m 2-	9.13 m 5/2+
EC	ΕС,α	EC,α 🗡	ΕС,α	ΕС,α	EC	EC	EC
Er151	Er152	Er153	Er154	Er155	Er156	Er157	Er158
23.5 s (7/2-)	10.3 s 0+	37.1 s (7/2-)	3.73 m 0+	5.3 m 7/2-	19.5 m 0+	18.65 m 3/2-	2.29 h 0+
EC *	EC ,α	ΕС,α	ΕС,α	EC,α 🗸	EC	EC	EC

Laser Spectroscopy with COLLAPS

Magnetic moments, μ , Quadrupole moments, $Q_{\rm s}$, Nuclear spins, I,

Precision and nuclear model independent measurements

The proton emitter ¹⁴⁷Tm

Ultimate case: Laser spectroscopy of ¹⁴⁷Tm

EC,p First laser measurement of any proton emitter First charge radius measurement of any proton emitter → Expect to see an increase in the charge radius Will drive development of DFT coupling to an open-quantum system

- Track the behaviour of the charge radii en route...
- → To determine the magnitude of the increase, need systematics of radii leading to ¹⁴⁷Tm → Does the charge radii continue the same smooth trend until ¹⁴⁷Tm?

Part of a wider programme, eg. laser spectroscopy of ^{53m}Co proposed at JYFL.

Physics cases on the way to ¹⁴⁷Tm

Laser measurements

- No laser measurements of moments or radii in the region across the N = 82 shell closure Upward kink in the radii across shell closure?

- Benchmark DFT calculations in the region and continue development ready for ¹⁴⁷Tm. Only tentative spin assignments down from ¹⁵³Tm.
- Confirm spin systematics of isomers -> may help unravel proton spectra of 146Tm

Mass measurements

- Ability of ISOLTRAP to analyse beam content
- Lack of data around ¹⁵¹Tm to give accurate strength of N = 82 shell gap $\rightarrow S_{2n}$, δS_{2n} No ground or isomeric state measurements ^{149,150}Tm
- Wealth of long-lived and low-lying isomers -> benchmark nuclear structure calculations • Many excitation energies ¹⁵¹⁻¹⁵⁷Tm tentative from decay spectroscopy - isomers resolved?
- Level ordering unclear eg. ^{152,154}Tm

Primary aims:

- Establish yields from a Ta foil target + PSB + RILIS
- Identify a strong transition in the ion
- Confirm sensitivity to moments

$$A = \frac{\mu}{I} \frac{B_e(0)}{J} \qquad B = Q_s V_{zz}$$

• Confirm sensitivity to $\delta \langle r^2 \rangle$

$$\delta \nu^{A,A'} = \frac{A' - A}{AA'} M + F \,\delta \langle r^2 \rangle^{A,A'}$$

Difficulties encountered:

Overwhelming contamination below ¹⁵⁵Tm

→ Identified using ISOLTRAP as rare-earth oxides

Target failure / Loss of protons

Letter of Intent I245 - 2023 beamtime (6 shifts)

P673 (IS740) — 2024 beamtime (13 shifts)

- Background suppressed substantially using a Laser Ion-Source Trap (LIST) (although yields suppressed also)

- Failure of target (heating circuit) then failure of replacement target (sintering) ISOLTRAP not operational during the experiment due to a recent fault

Measurements to date (LOI245 + IS740)

- Nuclear moments and changes in mean-square charge radii for:
 - All ground states from ¹⁷⁵Tm to ¹⁵²Tm (24 isotopes)
 - Isomeric states in ¹⁷⁴Tm, ¹⁶⁴Tm, ¹⁶²Tm, ¹⁶¹Tm, ¹⁶⁰Tm, ¹⁵⁵Tm, ¹⁵⁴Tm, ¹⁵³Tm...
- Existence of isomeric states not listed databases in a couple of cases
- Spin corrected in at least one case (and all spins are tentative down from ¹⁵³Tm
- Two peaks measured for the isomeric state in ¹⁵²Tm
- Peaks observed for ¹⁵¹Tm, which marks the shell closure.

Extending measurements with COLLAPS (ionic line)

• Repeat ¹⁵²Tm to measure a third peak of the isomeric state

- Continue measurement of ¹⁵¹Tm (gs and m)
 - Marks the shell closure
 - Continues to track the $11/2^-$ state
 - Also a $1/2^+$ isomeric state

- Explore spectroscopy of ¹⁵⁰Tm and measure the yield

 - (1^+) and (6^-) states, assigned a half life of 2.2 seconds

Expect to see upward kink in the charge radii crossing the shell closure

Going further: PI-LIST + IDS

- Scan the first step while using gamma detection at IDS
- Resolution improved to a few 100 MHz
- Favourable gamma multiplicity
- Spectroscopy of ¹⁵⁰Tm and ¹⁴⁹Tm
 - \rightarrow Passing the N = 82 shell closure
 - \rightarrow Continue to track systematics of radii and moments of $(11/2^{-})$ state
- Efficiency loss of around a factor of 10 in going to PI-LIST from normal LIST
- Contaminants identified by ISOLTRAP are also much longer lived.

but will be more than compensated by selectivity of decay tagging than single-ion counting.

Need to calibrate atomic factors:

$$A = \frac{\mu}{I} \frac{B_e(0)}{J} \qquad B = Q_s V_{zz} \qquad \delta \nu^{A,A'} = \frac{A'}{J}$$

• Moreover, the ratio of the hyperfine A and B coefficients between the upper and lower states of the transition can be established

Constrains the hyperfine structure fitting

Will also assist with calculation of field and mass shift factors.

Beam request

- Collinear laser spectroscopy of ^{152m,151g,151m,150}Tm using the ionic transition
 - 3 shifts for ^{152m,151g,151m}Tm and 3 shifts ¹⁵⁰Tm
- Spectroscopy of ^{150,149}Tm and an initial exploration beyond using PI-LIST and IDS
 - 1 shift of optimisation of PI-LIST 4 shifts for measuring ^{150,149}Tm and 3 shifts for an exploration towards ¹⁴⁷Tm
- Collinear laser spectroscopy of two or three isotopes on an atomic line to calibrate the constant A and B ratios for the atomic line used for PI-LIST (1st step)
 - 1 shift for measuring a few more intensely produce isotopes
- Mass measurements with ISOLTRAP from ¹⁵⁵Tm downwards, and beam diagnostics
 - 3 shifts for ^{149–155}Tm

Total: 18 shifts

TAC comments

Stated that yields are feasible.

Comments to the proponents/INTC:

- Please do not overheat the target too early due to risk of sintering! In September 2024, this happened after 2-3 days of operation already.
- target material development is necessary to maintain target integrity also at higher temperatures required for release:
 - Shape / arrangement of the foils
 - Sintering inhibitors (alternating with W) -> RIST target, TRIUMF

Have learned more about optimal heating and proton intensity to preserve yields.

- Aspects where yield is less critical (eg. calibration of atomic line) can be towards the end.

Collaboration

B. Cheal¹, L. V. Rodríguez^{2,3}, R. Heinke^{4,5}, A. Ajayakumar⁵, A. N. Andreyev⁶, M. Au⁵, S. Bai⁷, C. Bernerd⁵, K. Blaum³, H. Bodnar⁸, P. Campbell⁴, K. Chrysalidis⁵, J. Cubiss^{6,9}, T. Fabritz^{2,8}, R. F. García Ruíz¹⁰, P. F. Giesel¹¹, J. Hughes¹, P. Imgram¹², A. A. H. Jaradat^{4,5}, F. Koehler⁸, K. Koenig⁸, D. Lange³, T. Lellinger^{2,8}, I. Lopp⁸ D. Lunney¹³, K. M. Lynch⁴, E. Matthews⁸, W. Nazarewicz¹⁴, R. Neugart^{3,15}, G. Neyens¹², L. Nies², W. Nörtershäuser⁸, R. D. Page¹, J. Palmes⁸, P. Plattner³, J. R. Reilly⁵, M. Reponen¹⁶, P. G. Reinhard¹⁷, S. Rothe⁵, R. Sánchez¹⁸, Ch. Schweiger³, L. Schweikhard¹¹, S. Stegemann⁵, T. Stora⁵, S. M. Wang¹⁹, J. Wessolek^{4,5}, J. Wilson⁶, X. F. Yang⁷, D. T. Yordanov¹³

Broad collaboration of COLLAPS, ISOLTRAP, TISD, RILIS, PI-LIST, IDS

Represents the best opportunity to measure nuclear moments and radii of a proton emitter at ISOLDE