Shell evolution in Ge isotopes with N≥50 investigated via fast-timing methods

CERN-INTC-2024-071 INTC-P-723

L.M. Fraile, J. Benito, A. Illana Grupo de Física Nuclear & IPARCOS Universidad Complutense, Madrid, Spain

The region around ⁷⁸Ni

Reorganization of orbitals: π Of_{5/2} & 1p_{3/2} inverted when the ν Og_{9/2} orbital is filled

Onset of deformation Shape co-existence

Role on nucleosynthesis processes

R. Taniuchi et al., Nature 569 (2019) 53

N>50 region north from ⁷⁸Ni

 $2d_{5/2}, 1g_{7/2}, 2d_{3/2}$

Neutron-rich Ge (Z=32) isotopes populated in beta-decay of Ga

Evolution of structure as a function of neutron number Excitations of the N=50 core may play a role Calculated co-existence of shapes

	⁷³ As c- capture	⁷⁴ As _{β+}	⁷⁵ As Stable	⁷⁶ As ⊮	⁷⁷ As _{p-}	™As ⊩	⁷⁹ As ⊮	®As ⊬	[≈] As ⊩	⁸² As _{p-}	⁸³ Аs _{β-}	⁸⁴ Аs β-	⁸⁵ As ⊮	⁸⁶ Аs µ-	⁸⁷ Аs µ-	⁸⁸ Αs β.
	⁷² Ge Stable	⁷³ Ge Stable	⁷⁴ Ge Stable	³Ge ⊮	™Ge ≇-	77Ge β-	™Ge β-	™Ge ⊬	ⁿⁱ Ge ^{j.}	^{si} Ge ^{p.}	^ю Ge _{β-}	^{в1} Ge β-	[™] Ge β-	⁸⁵ Ge β-	⁸⁶ Ge β-	⁸⁷ Ge β.
	71Ga Stable	™Ga β-	⁷³ Ga β-	²⁴Ga ⊮	²³ Ga β-	™Ga β-	™Ga ¢-	™Ga ¢	™Ga ⊧	[™] Ga ⊧	"Ga β.	EGa ß	⁸⁰ Ga ¢	™Ga β-	^{#3} Ga β-	^M Ga β·
	⁷⁰ Zn Stable	⁷¹ Zn ¢	72 Z n #	⁷³ Zn #	⁷⁴ Zn β-	75 Zn #	™Zn ₽	™Zn ₽	"Zn	⁷⁹ Zn 1	^{ss} Zn p	"Zn ^p	^{K2} Zn ¢	^{so} Zn ^p	[™] Zn β	⁸⁵ Zr ^β
,	°°Cu	™Cu p-	⁷¹ Cu ^p	"2 Cu ⊮	²² Cu _{β-}	²⁴ Cu ^{p-}	⁷³ Cu P	[≈] Cu	"Cu *	⁷¹ Cu	⁷⁹ Cu p-	^{NC} Cu	"Cu	⁸² Cu ^p		
	«Ni	"Ni	⁷⁰ Ni P	⁷¹ Ni P	⁷² Ni ^{p.}	⁷³ Ni ^{p-}	⁷⁴ Ni p-	™Ni ⊬	³⁶ Ni P	"Ni ⊩	⁷⁸ Ni p.	⁷⁹ Ni ^{р.}	™Ni ⊬			
	^{s7} Со _{β-}	⁶⁶ Co	⁶⁰ Со ^{β-}	⁷⁸ Co ^{p.}	⁷¹ Co β-	73 Co }-	73 Co 6-	³⁴ Со ^{р.}	⁷³ Co ⊧-	[%] Со ^µ	⁷⁷ Со _{β-}	Primary Decay Mode				
	"Fe	⁶⁷ Fe ۴	⁶⁸ Fe β-	⁶⁶ Fe _{β-}	⁷⁶ Fe β-	⁷¹ Fe β-	⁷² Fе _{β-}	™Fe ⊬	⁷⁴ Fe _p	⁷³ Fе β-		Stable β + β - 2β + 2β - p n 2p 2n α e- capture Fission e+ Stable Unknown				
	⁶⁵ Mn β−	⁶⁶ Мп ^{β-}	⁵™Mn β-	™Mn β-	⁶⁹ Mn β-	⁷⁰ Мп β-	⁷¹ Mn β-	⁷² Mn ß-								
	⁶⁴ Cr β-	⁶⁵ Сг ^{β-}	⁶⁶ Cr ^{β-}	°Cr ^{β-}	^ω Cr β-	^ω Cr β-	⁷⁹ Сг β									

 $1g_{9/2}$

Beta decay

- ß-delated neutron branches
- GT vs. ff
- Impact on r-process

INTC November 2024

If_{7/2}

- Profit from enhanced production and purity of Ga beams at ISOLDE to investigate Ge structures populated in beta-decay
 - \rightarrow proton configurations for fp shell: SM calculations limited occupation of the $1p_{3/2}$ orbit
 - \rightarrow main role by neutron contributions, specifically the 1d_{5/2}

Does it change for more neutron rich nuclei? Deformed structures?

- Beta-decay from Ga is of strong interest
 - → GT transitions involves cross-shell transformations that populate states at high excitation energies.
 - → It favours beta-delayed neutron emission branches
 - → Competition with 1st forbidden transition

Take advantage of full IDS spectroscopy capabilities to expand level schemes Complementary measurements of state lifetimes by fast-timing Provide robust theoretical interpretation

Even-even Ge isotopes

Even-even isotopes: test beam ⁸⁴Ge

Singles, direct ß-feeding Also ß-delayed neutron branches

Access to feeding pattern and emission above S_n

P. González-Tarrío et al., Master Thesis, UCM

Theoretical interpretations (⁸⁴Ge)

Int SM: LNPS

4000 $_{42}^{\gamma} \left[\mathbf{deg} \right] \overline{E_{\mathbf{PNVAP}} \left[\mathbf{Me}^{4^{\dagger}_{\mathbf{V}}} \right]}$ 10.0 3000 8.0 E [keV] 5000 6.0 204.0 1000 - 10 2.0 0 0.0 00.001-0.03 0.06 0.09 0.12

1						
	$J^{\pi}_{\sigma,i}$	$J^{\pi}_{\sigma,f}$	B(E2) [W.u.]	$Q_s \; [e{ m fm}^2]$		
	2^+_1	0_{1}^{+}	37.9	23.65		
-	2^+	2_{1}^{+}	41.2	-25.67		
1	² 2	0^+_1	0.6	20.01		
1	4+	2^{+}_{2}	0.2	9.37		
1	*1	2_{1}^{+}	53.6			
		4_{1}^{+}	16.3			
1	4_{2}^{+}	2^{+}_{2}	18.8	42.76		
		2_{1}^{+}	0.9			
-	0^+_2	2_{1}^{+}	7.8	0		
1	6^+_1	4^+_1	49.4	-0.25		

T.R. Rodríguez, P. González-Tarrío et al.,

Spectra + transition rates + deformation

HFB, projected to N,Z, J

Odd-A Ge isotopes

Single-neutron *qp*, neutron configurations, ordering

Direct ß-feeding and ß-delayed neutron branches

Access to feeding pattern (emission above S_n?)

Expand level schemes

Nature of the low-lying states

Lifetime investigation

1st excited states and other low-lying: core coupling yields long lifetimes high-lying states should be accessible

Preliminary data: ⁸³Ga decay

Limited coincidence study Assessment of contaminants

Note interesting nuclei are populated down the decay chains towards N=50

IDS setup

New IDS configuration Increased number of Clovers Increased beta-efficiency

Beam time request

· UC₂/graphite target

Online calibrations: 2 shift

^{83-86,87}Ga: 19 + 1 shifts (including RILIS off)

Isotope (J^{π})	$\begin{array}{c} T_{1/2} \\ [ms] \end{array}$	Yield $[ions/\mu C]$	Ions/s	Decay mode	br(%)	$\beta_{Gated} - \gamma_{Ge}$ [Counts/shift]	β - γ_{LaBr} - γ_{Ge} [Counts/shift]	Shifts
83 Ga $(5/2^{-})$	308(1)	4500	7700	β	37(3)	$6.3 \cdot 10^5$	525	1.5
				β -n	63(3)	-	-	
84 Ga (0 ⁻)	95(2)	450	770	eta	61(2)	$6.3 \cdot 10^4$	155	3.5
				β -n	37(2)	-	340	
85 Ga $(5/2^{-})$	92(4)	20	34	eta	22(3)	$2.8 \cdot 10^{3}$	65	6
				β -n	76(3)	-	70	
86 Ga (?)	43(2)	2	3.4	β	26(3)	$2.8 \cdot 10^2$	-	8
				β -n	60(3)	-	-	
87 Ga $(5/2^-?)$	29(4)	≤ 0.05	≤ 0.1	β -n	?	-	-	1

Collaboration

L.M. Fraile¹, J. Benito¹, A. Illana¹, O. Alonso-Sañudo¹, A.N. Andreyev², A. Algora³,
O. Alonso-Sañudo¹, M.J.G. Borge⁴, J.A. Briz¹, M. Caballero¹, S. Casci⁵, T.E. Cocolios⁵,
J.G. Cubiss^{3,6}, G. García de Lorenzo¹, P. González-Tarrío¹, R. Grzywacz⁷, J.L. Herraiz¹,
J. Jolie⁸, A. Korgul⁹, U. Köster¹⁰, R. Liča¹¹, M. Llanos-Expósito¹, M. Madurga⁷,
N. Marginean¹¹, R. Marginean¹¹, A. McFarlane², C. Mihai¹¹, E. Nácher³, A. Negret¹¹,
C.R. Nita¹¹, V.M. Nouvilas¹, J. Ojala^{12,13}, B. Olaizola⁴, C.A.A. Page³, R.D. Page¹⁴,
J. Pakarinen^{12,13}, P. Papadakis¹⁵, S. Pascu¹¹, A. Perea⁴, T.R. Rodríguez¹, F. Rotaru¹¹,
B. Rubio³, J. Sanchéz-Prieto⁴, C. Sotty¹¹, M.M. Satrazani⁵, M. Stryjczyk^{12,13},
O. Tengblad⁴, J.M. Udías¹, M. Vogiatzi⁵, N. Warr⁸, J. Wilson², H. de Witte⁵, Z. Yue², and the IDS Collaboration

¹Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
²School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
³Instituto de Física Corpuscular, CSIC and Universidad de Valencia, Paterna, Spain.
⁴Instituto de Estructura de la Materia, CSIC, Madrid, Spain.
⁵KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium.
⁶School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
⁷Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA.
⁸Institut für Kernphysik, Universität zu Köln, Köln, Germany.
⁹Faculty of Physics, University of Warsaw, Warsaw, Poland.
¹⁰Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.
¹¹ "Horia Hulubei" National Institute of Physics, University of Jyväskylä, Jyväskylä, Finland.
¹³Helsinki Institute of Physics, Helsinki, Finland.
¹⁴Oliver Lodge Laboratory, University of Liverpool, L69 7ZE, UK.
¹⁵STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK.