# Collinear resonance ionization of neutron-deficient indium: closing up on N = 50

Jessica Warbinek on behalf of the CRIS collaboration

INTC Meeting 77, November 12, 2024



### Introduction



#### Studying the shell structure around doubly magic <sup>100</sup>Sn

- Testing the shell model under extreme conditions
- Robustness of N=50 near Z=50, towards dripline
- Proton-neutron interactions near shell closure
- Role of electro-weak currents



### Previous indium runs at CRIS



#### Studying the shell structure around doubly magic <sup>100</sup>Sn

- Testing the shell model under extreme conditions
- Robustness of N=50 near Z=50, towards dripline
- Proton-neutron interactions near shell closure
- Role of electro-weak currents

#### Studying In isotopes at CRIS, with one p-hole to <sup>100</sup>Sn

- Studying nuclear structure evolution approaching N=50 and N=82
- Correlations of single proton hole with n / n-holes

We propose: closing up on N=50 in the indium chain

<sup>99,100</sup>In: pin-point the evolution of nuclear structure, sensitive to the presence of mixed configurations, benchmarking nuclear theory, investigating magicity of N=50



### Charge radii of neutron-deficient In

#### Changes in mean square charge radii:

A sensitive probe to study the evolution of nuclear size and deformation

- Kink in charge radii: probe for shell closure
- Odd-even staggering: many body correlations & local effects
- Benchmarking nuclear theory models: Predictions for indium by DFT and abinitio frameworks available, discrepancies observed towards N=50



M. Reponen et al., Nat. Commun. 12, 4596 (2021). J. Karthein et al., Nat. Phys. (2024). J. Karthein et al., arXiv preprint 2310.15093 (2023).

#### **Electric quadrupole moments:**

Reflects the evolution of collectivity towards mid-shell Probe arising collectivity beyond shell closure Reflects arising deformation



99 103 107 111 115 119 123 127 131 Mass number A



L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023).
A. Vernon et al., Nature 607, 260–265 (2022).
T. Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024).

J. Karthein et al., Nat. Phys. (2024). J. Karthein et al., arXiv preprint 2310.15093 (2023).

Jessica Warbinek - 77th INTC Meeting, November 12 2024

#### **Electric quadrupole moments:**

Reflects the evolution of collectivity towards mid-shell Probe arising collectivity beyond shell closure Reflects arising deformation

#### Magnetic dipole moments:

A sensitive probe to study the interplay between the single particle structure and many-body correlations.

Reflect the strength of a shell closure

Ordering of shell model levels and leading configuration for odd-odd nuclei



L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023).
A. Vernon et al., Nature 607, 260–265 (2022).
T. Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024).

J. Karthein et al., Nat. Phys. (2024). J. Karthein et al., arXiv preprint 2310.15093 (2023).

#### **Electric quadrupole moments:**

Reflects the evolution of collectivity towards mid-shell Probe arising collectivity beyond shell closure Reflects arising deformation

#### Magnetic dipole moments:

A sensitive probe to study the interplay between the single particle structure and many-body correlations.

Reflect the strength of a shell closure

Ordering of shell model levels and leading configuration for odd-odd nuclei



L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023). A. Vernon et al., Nature 607, 260–265 (2022). T. Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024).

J. Karthein et al., Nat. Phys. (2024). J. Karthein et al., arXiv preprint 2310.15093 (2023).

#### **Electric quadrupole moments:**

Reflects the evolution of collectivity towards mid-shell Probe arising collectivity beyond shell closure Reflects arising deformation

#### Magnetic dipole moments:

A sensitive probe to study the interplay between the single particle structure and many-body correlations.

Reflect the strength of a shell closure

Ordering of shell model levels and leading configuration for odd-odd nuclei



L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023).
A. Vernon et al., Nature 607, 260–265 (2022).
T. Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024).

J. Karthein et al., Nat. Phys. (2024). J. Karthein et al., arXiv preprint 2310.15093 (2023).



### CRIS technique





- In 2 days of measurements: no decrease in yield for <sup>99</sup>In
- Main contamination <sup>81,80</sup>SrF yields known from ISOLTRAP

→ CRIS technique selective, previously handled 3 orders of magnitude and more higher contamination





- In 2 days of measurements: no decrease in yield for <sup>99</sup>In
- Main contamination <sup>81,80</sup>SrF yields known from ISOLTRAP

→ CRIS technique selective, previously handled 3 orders of magnitude and more higher contamination



New CRIS developments offer further background reduction by 2 orders of magnitude

New FIU successfully commissioned

No laser related background from high power non-resonant step

A. Vernon et al., Sci. Rep. 10, 12306 (2020). C. Schulz et al., J. Phys. B 24, 4831, (1991).



Upgraded CRIS DSS for increased sensitivity

T.E. Cocolios, IS682 - Add1



Jessica Warbinek - 77th INTC Meeting, November 12 2024

# Shift request

- LaC<sub>x</sub> target + RILIS
- Yields for <sup>99, 100</sup>In measured by ISOLTRAP
- Contamination known and yields measured (ISOLTRAP)

|                       | Half live | Yields (/2µC)     | Shifts         | New results                            |
|-----------------------|-----------|-------------------|----------------|----------------------------------------|
| <sup>112-122</sup> ln | > 1s      | > 10 <sup>4</sup> | 3              | Reference                              |
| <sup>100</sup> In     | 5.65(6) s | $3 \times 10^{2}$ | 3              | Ι, μ, $Q_{s'}$ δ $\langle r^2 \rangle$ |
| <sup>99</sup> In      | 3.1(2) s  | $5 \times 10^{0}$ | 15             | Ι, μ, $Q_{s'}$ δ $\langle r^2 \rangle$ |
| Stable                |           | CRIS setup        | 3 (no protons) |                                        |

Combination of FIU and decay-based detection available: enables options for background free experiment



- Measurement done in 1 shift, single ion counting
- Similar complex HFS
- Similar charge exchange cross section and laser transition strength
- Shifts requested account for low yields and estimated from

previous CRIS run with low yields

L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023). R.P. de Groote et al., Nature Phys. 16, 620–624 (2020). A. Vernon et al., Spectrochim. Act. B 153, 61-83 (2019). R.P. de Groote et al., Phys. Rev. C 96, 041302 (2017).



# Shift request

- LaC<sub>x</sub> target + RILIS
- Yields for <sup>99, 100</sup>In measured by ISOLTRAP
- Contamination known and yields measured (ISOLTRAP)

|                       | Half live | Yields (/2µC)       | Shifts         | New results                            |
|-----------------------|-----------|---------------------|----------------|----------------------------------------|
| <sup>112-122</sup> ln | > 1s      | > 104               | 3              | Reference                              |
| <sup>100</sup> In     | 5.65(6) s | 3 × 10 <sup>2</sup> | 3              | Ι, μ, Q <sub>s</sub> , δ(r²)           |
| <sup>99</sup> In      | 3.1(2) s  | $5 \times 10^{0}$   | 15             | Ι, μ, $Q_{s'}$ δ $\langle r^2 \rangle$ |
| Stable                |           | CRIS setup          | 3 (no protons) |                                        |

Combination of FIU and decay-based detection available: enables options for background free experiment

- Stable beamtuning for **CRIS setup**: 3 shifts
- Reference measurements throughout experiment, calibration of voltage drifts and systematic effects: 3 shifts
- Laser spectroscopy of <sup>100</sup>In: 3 shifts, Laser spectroscopy of <sup>99</sup>In: 15 shifts

TAC comments: The TAC does not foresee any major issues with this proposal.

L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023). R.P. de Groote et al., Nature Phys. 16, 620–624 (2020). A. Vernon et al., Spectrochim. Act. B 153, 61-83 (2019). R.P. de Groote et al., Phys. Rev. C 96, 041302 (2017).



### Conclusion

We propose to study neutron deficient indium isotopes closing up on the N=50 shell closure to investigate the structural evolution in the direct vicinity of in <sup>100</sup>Sn

- Assess the charge radii towards the shell gap for the onset of collectivity
- Determine spins which are only tentatively assigned
- Investigate g-factor and nuclear moments to investigate impact of the N=50 shell closure in In

### This proposal





### Acknowledgments



The University of Manchester



<u>J. Warbinek<sup>1</sup></u>, O. Ahmad<sup>2</sup>, J. Berbalk<sup>2,3</sup>, A. Belley<sup>4</sup>, T.E. Cocolios<sup>2</sup>, R.P. de Groote<sup>2</sup>, C.M. Fajardo-Zambrano<sup>2</sup>, K.T. Flanagan<sup>5</sup>, R.F. Garcia Ruiz<sup>4</sup>, J. Karthein<sup>6</sup>, A. Koszorus<sup>2,7</sup>, L. Lalanne<sup>8</sup>, P. Lassegues<sup>2</sup>, Y. Liu<sup>9</sup>, K.M. Lynch<sup>5</sup>, D. McElroy<sup>5</sup>, A.C. McGlone<sup>5</sup>, J. Munoz<sup>4</sup>, G. Neyens<sup>2</sup>, L. Nies<sup>1</sup>, F. Pastrana<sup>4</sup>, A. Raggio<sup>10</sup>, J.R. Reilly<sup>3</sup>, B. van den Borne<sup>2</sup>, R. Van Duyse<sup>2</sup>, J. Wessolek<sup>3,5</sup>, S.G. Wilkins<sup>4</sup>, X.F. Yang<sup>9</sup>.

Massachusetts

Institute of

Technology





<sup>1</sup>Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
 <sup>2</sup>Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
 <sup>3</sup>Systems Department, CERN, CH-1211 Geneva 23, Switzerland
 <sup>4</sup>Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
 <sup>5</sup>Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
 <sup>6</sup>Department of Physics & Astronomy, Cyclotron Institute, Texas A&M University, TX 77840, USA
 <sup>7</sup>Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
 <sup>8</sup>IPHC, Universite de Strasbourg, Strasbourg F-67037, France
 <sup>9</sup>School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100971, China
 <sup>10</sup>Department of Physics, University of Jyvaskyla, 40500 Jyvaskyla, Finland

**KU LEUVEN** 



北京大学

PEKING UNIVERSITY





ISOLTRAP efficiency 0.3% to CA0 rate:

Corresponds to average of 4 cps in CA0
 No drop observed in SrF or In

In 2 days of measurements: no decrease in yield observed Conservative target heating ensured longevity

### TAC comments:

- Contamination mainly from SrF (as in case of IS661) -> should be removed by tape station on experiment side
   Recommend proton trigger to handle SrF In is likely faster
- For such exotic cases RILIS would certainly be operated with both 1st steps from gs and first thermal

✓ increase yield by ~20%



# Field ionization unit + Decay station



Laser background from 1064 observed from molecular species during <sup>101</sup>In experiment Rydberg

<sup>9s <sup>2</sup>S<sub>1/2</sub></sup> FIU via Rydberg state makes high power laser ~1658 nm 8s <sup>2</sup>S<sub>1/2</sub> obsolete



~2531 nm

1064 nm

Upgraded CRIS decay station available with new plastic scintillators: enhanced sensitivity

Field ionization unit successfully implemented in CRIS

Principle shown with stable K beam from ISOLDE



T.E. Cocolios, IS682 – Add1



### Systematic drifts



Voltage calibration necessary over long range of isotopes

#### Instabilities observed in ISCOOL voltage readout





Agota Koszorus, Dissertation, KU Leuven (2019).