Comparison of bulk and interfacial diffusion of ⁸Li⁺ in solid-state battery materials with β-NMR spectroscopy

G. Rees^{1,2}, B. Payne^{1,2}, A. Sparks³, N. Azaryan^{3,4}, M. Baranowski⁴, M.L. Bissell³, P. Bruce^{1,2}, M. Chojnacki^{3,4}, M. Pasta^{1,2}, M. Pesek³ M. Kowalska^{3,4}, I. Michelon^{3,4}, M. Piersa³, D. Paulitsch^{3,5}, Z. Salman⁶, D. Zakoucky⁷, A. Nagpal^{3,8}

Department of Materials, University of Oxford, Oxford, UK
The Faraday Institution, Didcot, UK
Experimental Physics Department, CERN, Geneva, Switzerland
Department of Particle and Nuclear Physics, University of Geneva, Geneva, Switzerland
University of Innsbruck, Innsbruck, Austria
Paul Scherrer Institute, Villingen, Switzerland
Nuclear Physics Institute, Czech Academy of Sciences, Rez, Czechia
School of Physics, Engineering and Technology, University of York, York, UK

Spokesperson: Gregory Rees (gregory.rees@materials.ox.ac.uk) Co-spokesperson: Amy Sparks (amy.sparks@cern.ch) Technical coordinator: Magdalena Kowalska (magdalena.kowalska@cern.ch)

CERN INTC P-713 8.2.2024

- Interfaces in SSBs are often the expected bottlenecks for ion diffusion
- How to obtain good rate capability? → a major challenge in SSB development

+ more!

Temperature

- Interfaces in SSBs are often the expected bottlenecks for ion diffusion
- How to obtain good rate capability? → a major challenge in SSB development

https://article.murata.com/en-sg/article/basic-lithium-ion-battery-4

Conventional ways to study ion dynamics:

- Often cannot explain performance differences in many SSB cells
- Exclusively focus on bulk properties

- **Interfaces** in SSBs are often the expected bottlenecks for ion diffusion
- How to obtain **good rate** capability? \rightarrow a major challenge in SSB development

Often cannot explain performance

differences in many SSB cells

*Liquid-state electrolytes (1-10 mS cm⁻¹)

Relaxometry and β -NMR

- Our measurements will be based on established conventional methods **but with spatial resolution!**
- <u>Conventional \rightarrow NMR relaxometry</u>: Nuclear spin parameter T_1 is related to jump rate τ^{-1} and activation energy E_a between lattice sites \rightarrow way to correlate ion diffusion

Relaxometry and β -NMR

Our measurements will be based on established conventional methods – but with spatial resolution!

1/T₁ (s⁻¹)

3

- **Conventional** \rightarrow NMR relaxometry: Nuclear spin parameter T_1 is related to jump rate T^{-1} and activation energy E_a between lattice sites \rightarrow way to correlate ion diffusion
- Extracted by fit of T_1 as a function of temperature
- <u>Our proposal $\rightarrow \beta$ -NMR relaxometry</u>: T_1 through measurement of the changes in β -particle asymmetry over time of implanted ion \rightarrow depth selectivity!
- ⁸Li is a good candidate for β -NMR and already carried out in similar

materials: (1) Produced with good yields at ISOLDE

(2) Sufficiently long $t_{1/2}$ = 840 ms and measurable T_1 values ~ 100-200 ms

(3) Can be polarised with VITO dye laser (⁸Li previously polarised at COLLAPS)

- (4) 100% β -decay to ⁸Be, with good β -asymmetry, 5-10%
- (5) Minimal quadrupolar effects in these materials
- (6) Larmor frequency of ⁸Li is well-known

SSB project progress

- Temperatures: -10, 50, 100, 150, 200°C (maxima expected ~100°C)
- Two well-separated β-resonances expected (electrolyte and anode)
- We expect to see changes in activation energy for different layers (the extent to which the ion samples the limited diffusion region will vary) + changes in intensity between β-resonances

Electrolyte	Li depth/ nm	Mean projected range/ nm		SEI depth
		Entire sample	Electrolyte	probed/ nm
Li ₇ PS ₆ , Li ₆ PS ₅ CI, Li _{5.5} PS _{4.5} CI _{1.5}	0	322±2		322±2
	250	475±2	482±2	232±2
	500	633±1	650±1	150±1
	700	754±2	792±1	92±1

SSB project progress

Electrolyte	Li depth/ nm	Mean projected range/ nm		SEI depth
		Entire sample	Electrolyte	probed/ nm
Li ₇ PS ₆ , Li ₆ PS ₅ CI, Li _{5.5} PS _{4.5} CI _{1.5}	0	322±2		322±2
	250	475±2	482±2	232±2
	500	633±1	650±1	150±1
	700	754±2	792±1	92±1

- The approval of the Nov 2023 LOI played a key role in securing the acceptance of the KT fund
- Designs already in place and manufacturing started with support from other departments and simulations
- Ready before next INTC call (May 2025)
- Experiment time dedicated to two other VITO projects this year, then ready for full SSB measurements in place of LOI

The VITO beamline

Front detector

Summary of shifts

Task	Time required	
Establishing and optimising ⁸ Li polarisation	4h, 0.5 shifts	
Locating and optimising ⁸ Li signal at the beginning	4h, 0.5 shifts	
Sample changes (sample move to load-lock, sample exchange in the loadlock in glove box, loadlock connection back to beamline)	2h x 12 samples, 3 shifts	
Temperature stabilisation for each sample	0.5h x 12 samples, ¾ shifts	
Measuring β -NMR resonances and T_1 (at stable temperature): 3 samples with 4 different thicknesses of front layers x data at 5 different temperatures	3h x 3 samples x 4 layer depths x 5 temp points = 22.5 shifts	

Total: 27.25 online shifts split into 2 runs