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Why another lecture series on signals ?

 The 2019 lecture series was quite popular with many follow up questions.
» The entire topic of signal processing, noise and optimum filters was not covered
* In the meantime, we made quite some progress on:

» Generalized Signal Theorems

« Simulation of detectors with resistive elements

« Statistics and dynamics of electron-hole avalanches

This lecture series will cover these topics.

Please ask guestions — | can also adapt the lecture according to requests for specific topics.
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Signals, Noise and Signal processing in Particle Detectors
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Recap
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Induced charges on metal electrodes

A

y A point charge in front of a grounded metal plane indices a

surface charge.
4@ ,y)

o(x,y) = _508_90|y=0 - L Y 3/2
dy T (= (o )

The charge induced on the individual strips is depends on the
position (X', y’) of the charge.

-w/i2 | -wi2

w/2 — 2! 27!
QM (z',y") / / (,y)dzdy = —% (arctan v Ia: — arctan — i ’33 )
w/2
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Induced currents on metal electrodes

Y ‘yo

If the charge is moving with a velocit
v towards ?he strip Weghave Y 9 ® l v While the charge is moving there is a current flowing

between the strip and ground.

5 - The movement of the charge induces a current.
ind/, /1 q w

= —— arctan —;
Q" (y") L aretang

lli;d(t)

: 2 w
ind
t) = q— arctan — t
Q" (1) g arctan o <0
: dQ™(t) 4w
Jindpy = — %\ t <0
(t) dt = (w? + 4v2t?) ! <
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Reciprocity theorem

Two arbitrary charge distributions p(x) and p(x)

0(X) p(X)

W= [peads = [ [ %d%d%e [ o)

[ eadis = [ pxpodta
Sounds like a trivial statement, but has very practical consequences.

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Qind0

Theorem, induced current

The current induced on a grounded conducting electrode by a point
charge g moving along a trajectory x(t) can be calculated the
following way:

ind X
pind(gy — - XO) T G k() = L (x(0)(0)

dt |

This weighting field E(x) is given by

En (X) - —Vlbn (X)

where E (x) is the electric field in case we remove the charge, put
electrode n to potential V,, an we ground all other electrodes.

- Ramo-Shockley theorem

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Ramo Shockley theorem (reciprocity theorem)

F16. 1. Schematic representation of conductors
and currents,

Currents to Conductors Induced by a Moving Point Charge

W. SHOCKLEY
Bell Telephone Laboratories, Inc., New York, N. Y.

(Received May 14, 1938)

General expressions are derived for the currents which flow in the external circuit connecting
a system of conductors when a point charge is moving among the conductors. The results are
applied to obtain explicit expressions for several cases of practical interest.

584 Proceedings of the I.R.E. September, 1939

Currents Induced by Electron Motion’
SIMON RAMOT, ASSOCIATE MEMBER, I.R.E.

Summary—A method is given for computing the instantaneous METHOD OF COMPUTATION
current induced in neighboring conductors by a given specified motion . . .
of electrons. The method is based on the repeated use of a simple The method is based on the following equation,

equation giving the current due to a single electron’s movement and is  whose derivation is i .
believed to be simpler than methods previously described. tion is given later

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN 11



Signals in particle detectors, 2019
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Strip detectors

Lecture 5:
Pixel detectors

- Possible overflow, wrap-up and Q&A session

Wire Chambers
Liquid Argon TPCs
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Quasi-static approximation of Maxwell’s equations

Assuming a conductivity sigma of the material we have a current according to

J(x,t) = o(x)E(x,1)
Maxwell's equations for this situation

VD(x,t) = p(x,t) D(x,t) = e(x)E(x, )
VB(x,t) = 0 B(x,t) = p(x)H(x,t)
V x E(x,t) = —aB(,(;’ Y
V x H(x,t) = aDé;:,t) +je(x,t) + o(x)E(x, )

The current j (X, t) is an ‘externally impressed’ current, which is related to the 'externally impressed’ charge density p, by

) Ope(x,1)
elX,t) = ———F——
Vie(x,t) Y
If we assume that this impressed current is only changing slowly we can neglect Faraday’s law and approximate
V x E(x,t) ~ 0 E(x,t) = —Vp(x,t)

and we can then write the electric field as the gradient of a potential, an by taking the divergence of the last equation ...

oVD(x,t)

V(V x H(x,t)) = 5

4 Vje(x, ) + V[o(X)E(x, )] = 0

~ Ope(x,1)
ot

+o(x)Vp(x,t)| =

13
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Quasi-static approximation of Maxwell’s equations

Performing the Fourier Transform of the quasi-static equation

dp(x,t)
ot

 Ope(x,t)

V |e(x)V o

+o(x)Ve(x,t)| =
we find

V [e(z) Viwp(x,w) + 0(x) Vi (x,w)] = —iwpe (X, w)
V(e(z) + o(x)/iw) Vo(x,w)] = —pe(x,w)
So we can write this equation as
V [eef(X)Vip(x,w)] = —pe(x, w) Eoff(X) = () + o(x) /iw p(x,w) = =V [e(x) Vi (x,w)]

This is the Poisson equation with an effective permittivity !

[1] H.A. Haus, J.R. Melcher, Electromagentic Fields and
Energy, Prentice-Hall, Englewood Cliffs, NJ, 1989.

NH, NUCLEAR
T mmuuzwrs
IN PHYSICS

RESEARCH
ELSEVIER Nuclear Instruments and Methods in Physics Research A 478 (2002) 444447 SechonA

The quasi-static electromagnetic approximation
for weakly conducting media *

Th. Heubrandtner, B. Schnizer*

Institut fur Theoretische Physik, Technische Universitit Graz, Petersgrasse 16, 8010 Graz, Austria

pe(x,w) = =V [eog(x) Voo (x,w)]

- We can therefore find the time dependent solutions for a medium with a given conductivity by solving the

electrostatic Poisson equation in the Fourier domain !

- Knowing the electrostatic solution for a given permittivity £(x) we just have to replace €(x) by £(xX)+o(X)/iw

and perform the inverse Fourier transform !

Signals in Particle Detectors, W. Riegler/CERN
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Extension of the Ramo Shockley theorem

2 Available online at www.sciencedirect.com NUCLEAR
k- (i . INSTRUMENTS
s scnenceCDmECT & METHODS
IN PHYSICS
. RESEARCH
Section A

ELSEVIER Nuclear Instruments and Methods in Physics Research A 535 (2004) 287-293
www.elsevier.com/locate/nima

Extended theorems for signal induction
in particle detectors VCI 2004

W. Riegler™*

CERN, PH Division, Rt. De Meyrin, Geneva 23CH-1211, Switzerland
Available online 13 August 2004

Abstract

Most particle detectors are based on the principle that charged particles leave a trail of ionization in the detector and
that the movement of these charges in an electric field induces signals on the detector electrodes. Assuming detector
elements that are insulating and electrodes with infinite conductivity one can calculate the signals with an electrostatic
approximation using the so-called ‘Ramo theorem’. This is the standard way for the calculation of signals e.g. in wire
chambers and silicon detectors. In case the detectors contain resistive elements, which is, e.g. the case in resistive plate
chambers or underdepleted silicon detectors, the time dependence of the signals is not only given by the movement of
the charges but also by the time-dependent reaction of the detector materials. Using the quasistatic approximation of
Maxwell’s equations we present an extended formalism that allows the calculation of induced signals for detectors with
general materials by time dependent weighting fields. As examples, we will discuss the signals in resistive plate chambers
and underdepleted silicon detectors.
© 2004 Elsevier B.V. All rights reserved.

Signals in Particle Detectors, W. Riegler/CERN
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y Theorem, induced current
(gll‘l0

Applying the delta voltage pulse to the electrode in question we find the
potential Y ,(x, t) and the field E,(x, t) from which the induced current can be

calculated the following way:
Iﬁxt( ) = SQGM / U (X, 8)pe(x, s)

pe(x,t) = qd(x — x,(t))

1e7t (1) = —Vi E,(x1(t),t — )% (t')dt’
w 40

v

- Ramo-Shockley theorem extension for conducting media

Note that E,, is not physical potential, since the delta function gives it a
dimension of V/cm s.

In case the material is an insulator there is no time dependence of the weighting
field and we recuperate Ramo’s theorem.

En(x,t) = Eno(x)0(t — t')  I€H(t) = —ViEno(xl(t))}'cl (t)dt

w

Signals in Particle Detectors, W. Riegler/CERN 16
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Theorem, induced voltage, dynamic

Applying the delta voltage pulse to the electrode in question we find the potential
Y, (X, t) and the field E,(x, t) from which the induced current can be calculated the
following way:

S

Q ] Xn (X, 8)pe(x,t)d>x

pe(x,t) = qd(x — x,(t))

Vznd( )

n

yind(g fol ), t — )%y (¢)dt'

Since the admittance matrix relates currents and voltages on the electrodes in
absence of charge, the admittance matrix relates the weighting fields E, and K,
and therefore related the currents induced on grounded electrodes and the
voltages induced on insulated electrodes.

Iznd Z ynm Vznd )

This means in turn that we can first calculate the current induced on grounded
electrodes and then place these currents as ideal current sources on the
equivalent circuit of the medium.

Signals in Particle Detectors, W. Riegler/CERN
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Equivalent circuit, Impedance elements

zZu(s Zy (s)

[4nd(t) L)
2

V,ind(t) vty
2

In case the electrodes are not insulated
but connected with discrete linear
Impedance components we can consider
them as part of the medium and we
therefore just have to add these

elements in the equivalent circuit.

o(t) 1 _ 1 1

12/4/19 Signals in Particle Detectors, W. Riegler/CERN
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Micromegas toy-model example

The time-dependent weighting potential y,(x,t) is comprised of a static prompt and a dynamic
component:

Static weighting potential of a readout strip Dynamic weighting potential of a readout strip with resistive layer
Time=0ns |
mm T T T T T V mim T T T T T V
| =yl | o097 .l = P 1d (o 1 =097
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Micromegas toy-model example

The time-dependent weighting potential y,(x,t) is comprised of a static prompt and a dynamic

component:

Static weighting potential of a readout strip

3.51 = 7P 1
3t wi(xv t) =~ 'ﬁi (X) |
2.5 7
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1.5F l .
1_ .
0.5F v .
ok 0 4
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Resistive strip bulk Micromegas

Calculated dynamic weighting potential

t=0ns t=0ns

While the previous slide the embedded readout electrodes were

beneath a thin resistive layer, the ATLAS-type MM, used in the E . E :- '
NSW upgrade, instead features perpendicular resistive strips over ===
a dielectric foil. N IR
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Resistive strip bulk Micromegas

After having calculated the signals induced on the strip electrodes,
the electronics with which the detector is read out needs to be

taken into account.
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Resistive strip bulk Micromegas

For the comparison we look at the average induced current response of neighboring strips. This averaging is performed over

muon events positioned between the leading and the next-to-leading strip.
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6-gap MRPC

The dynamic weighting potential was calculated using COMSOL and then imported into Garfield++ for the induced
signal calculations. Given a graphite layers with O(100 kQ/o), the signal induced by electrons remains unaffected.
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6-gap MRPC

The dynamic weighting potential was calculated using COMSOL and then imported into Garfield++ for the induced
signal calculations. Given a graphite layers with O(100 kQ/o), the signal induced by electrons remains unaffected.
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Signal formation in a MicroCAT detector

The MicroCAT’s two-dimensional interpolating readout structure allows for a reduced number of electronic
readout channels without loss of spatial resolution.

This resistive readout concept has recently enjoyed renewed interest with the development of a DC-Coupled
LGAD device: arXiv:2204.07226 [physics.ins-det].
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Signal formation in a MicroCAT detector

The MicroCAT'’s two-dimensional interpolating readout structure allows for a reduced number of electronic
readout channels without loss of spatial resolution.

This resistive readout concept has recently enjoyed renewed interest with the development of a DC-Coupled
LGAD device: arXiv:2204.07226 [physics.ins-det].
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MicroCAT resistive position interpolation readout

During production, the resistivity can fluctuate on the surface of the resistive layer. This could make the timing
response or reconstruction capability of your detector non-uniform over the active area.

High—PI‘e(‘iSiOll 4D TI‘ﬂCkillg with LAIge Pixels using Thin Map Of non_unlform res|st|V|ty In one readout Ce” Correctlon map
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n't resistivity: a 2% difference in nT resistivity turns an equal signal E
mV - 50.5 mV split, yielding a shift of the position assignment of ~ 7 80
pm for the 450 pm geometry and 20 pm for the 1300 pm design. The
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crucial parameter in RSD optimized for micron-level position resolu-
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Resistive Silicon Detectors

An exemplar geometry that makes full use of the dynamics of the resistive layers is the Resistive Silicon
Detectors (RSDs) by spreading the signal to surrounding “small” electrodes.

Here, an n* resistive layer of O(kQ/o) is separated from the readout electrodes by a SiO, layer.
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Resistive Silicon Detectors

We can plot the induced signal sourced by a moving hole traversing the 50 ym gap and arriving at time t=T.
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Resistive Silicon Detectors

It is suggested that to optimize for a uniform response, the electrodes should maximize pixel coverage to control
signal spread while minimizing metal use to ensure a uniform response across the entire area. Different AC-
coupled readout structures are suggested.

Dynamic weighting potential at the 1
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3D diamond sensor

3D Diamond Sensor, electrodes are ‘burnt’ into the diamond with

3D Silicon Sensor a laser. Columns have significant resistivity.
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3D Diamond sensor

In contrast to its silicon counterpart, the 3D electrode structure is achieved by inducing a local phase transition in
the diamond, resulting in graphitic pillar electrodes that have a finite conductivity.
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3D Diamond sensor

In contrast to its silicon counterpart, the 3D electrode structure is achieved by inducing a local phase transition in

the diamond, resulting in graphitic pillar electrodes that have a finite conductivity.

Simulated drift lines of e/h-pairs
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3D Diamond sensor

Simulations are conducted by the TIMESPOT organization, and the analysis results can be compared with those
from a beam test carried out in 2021 at CERN's SPS, using 180 GeV/c hadrons.
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Further extensions of the theorem

When calculating the induced signals in ‘long’ detectors e.g. wire
chambers like the ATLAS muon drift tubes, we intuitively proceed the
following way:

> We calculate the induced signal in the geometry assuming the
Ramo Shockley theorem.

> We place this signal as a current source at one specific point
inside the equivalent circuit of the detector, which is in this case a
transmission line.

> We find the propagated signal at the end of the transmission line.

Clearly this seems like an approximation.

> The Ramo Shockley theorem assumes the instantaneous
creation of the signal on the entire electrode.

> The extension of the theorem for weak conductivity is clearly not
applicable. The propagation of the signal in a transmission line
needs the full set Maxwell equations

Can one further extend the Weighting field concept ?

10/14/24 Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN 37
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Further extensions of the weighting field concept

Electrostatic Reciprocity

p(X) p(x)

https://en.wikipedia.org/wiki/Reciprocity (electromagnetism)

Lorentz reciprocity |ed

Specifically, suppose that one has a current density J; that produces an electric field E; and a magnetic field H; ,
where all three are periodic functions of time with angular frequency @, and in particular they have time-dependence
exp(—iwt) . Suppose that we similarly have a second current J» at the same frequency @ which (by itself) produces
fields B3 and Hs . The Lorentz reciprocity theorem then states, under certain simple conditions on the materials of the
medium described below, that for an arbitrary surface S enclosing a volume V:

f[Jl-Eg—El'ngdV:%’El XHQ—EQ XHll'dS.
V 5

Equivalently, in differential form (by the divergence theorem):
J] 'E2 —El 'Jz =V[E1 XH-;;—EE XH1] .

This general form is commonly simplified for a number of special cases. In particular, one usually assumes that J4
and J5 are localized (i.e. have compact support), and that there are no incoming waves from infinitely far away. In this
case, if one integrates throughout space then the surface-integral terms cancel (see below) and one obtains:

/Jl-Eng:fEL-Jng.

This result (along with the following simplifications) is sometimes called the Rayleigh-Carson reciprocity theorem,
after Lord Rayleigh's work on sound waves and an extension by Carson (1924; 1930) to applications for radio
frequency antennas. Often, one further simplifies this relation by considering point-like dipole sources, in which case
the integrals disappear and one simply has the product of the electric field with the corresponding dipole moments of
the currents. Or, for wires of negligible thickness, one obtains the applied current in one wire multiplied by the resulting
voltage across another and vice versa; see also below.

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Further extensions of the weighting field concept

Nuclear Inst. and Methods in Physics Research, A 980 (2020) 164471

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Philipp Windischhofer

Signals induced on electrodes by moving charges, a general theorem for R)

Check for

Maxwell’s equations based on Lorentz-reciprocity it
W. Riegler #*, P. Windischhofer "

a CERN, Switzerland
b University of Oxford, United Kingdom of Great Britain and Northern Ireland

ARTICLE INFO ABSTRACT

Keywords: We discuss a signal theorem for charged particle detectors where the finite propagation time of the electromag-
Ramo-Shockley theorem netic waves produced by a moving charge cannot be neglected. While the original Ramo-Shockley theorem and
Signals

related extensions are all based on electrostatic or quasi-electrostatic approximations, the theorem presented in
this report is based on the full extent of Maxwell’s equations and does account for all electrodynamic effects.
It is therefore applicable to all devices that detect fields and radiation from charged particles.

Weighting fields
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Ex,w) H(x, w)

€(X, m)
(X, ) J(x. )

Particle

(X, w)

Cathode planes

Anode wire

Any ‘object’ can, in classical electro-dynamic terms,
be described by a position and frequency
dependent

permittivity €
permeability
conductivity o

A charge moving around these objects represents a
current, which produces fields.

10/14/24 Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Further extensions of the weighting field concept

Maxwell’s Equations in the frequency domain

D =¢E B=/H J

Il
Q»
=

V-éE=p V-jH=0

VXE = -iwjiH VXH=J°+6E +iwfE

The solution of these equations will result in electric and magnetic fields
that will define the signals in these detectors.

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Further extensions of the weighting field concept

We define another situation with a
‘transposed’ material distribution and a

Ex,w) HXx )

Ex,w) H(x, o)

o - different current density Je .

é(x, w) &l(x, w) J(x, w)

(X, @) J(x, w) Al(x, ) . . . .
5%, ) (x.) Solving the Maxwell Equations with this

current density will resilt in different

electric and magnetic fields E, B.
a) b)

Fig. 1. Two different current densities in two material distributions that are related by a transposition of the response matrices.

V- (ExH) = HV XE) - E(V x H)
= —EJ — ioHAH - EG67T + iweT)E / E(x, 0)J¢(x, 0)dV = / Ex, ®)] (x,0)dV
V- (ExH) = HV XE) — E(V x H) 4 g
= -EJ° - ioHp"H — E(6 + iwé)E % Lorentz Reciprocity Theorem
subtract

VExH-ExH)=EJ'-EJ _ _
Two immediate consequences:

— — _ e -> Network Reciprocity
jﬁc(E XH-EXH)A = /(EJe —EJ)dV - Antenna Reciprocity
A |4

10/14/24 Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Network reciprocity

o) =

IL(w) (@)
Vo @) vV (w)
This is the network reciprocity theorem [28]:

The voltage across an impedance element Z, (w) due to a current I(w)

on a different element Z,(w) is equal to the voltage across Z,(w) for the
same current I(w) on Z,(w).

L(@)V () = I @)V - (13)

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN

N=10 N=10

Y, L@V, (@)= ) IV,
n=1 n=1
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Antenna reciprocity

Ex,w) H(x,w) @

Ex, o) H(x, o)

v (a)l‘,

I
2 ﬂaﬁ

Vz(w)

b)

P

(@) W

7y

Vy(@)

74
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VE&U)
Vl(wM / I()
I)(w) W ////

V3(CU) //
a)
N=3 - N=3 .
L@V (@) = Y T,(@)V,(@)
n=1 n=1

If we again assume just the first antenna to be driven by a current
I,(w) = I(w), and in the second situation we assume the second antenna
to be driven by the same current fz(a)) = I(w), we find that V,(w) =
V (). Since this relationship holds for arbitrary antenna geometries
and arbitrary relative orientations, we deduce the remarkable result
that the reception and transmission characteristics of each antenna

must be identical. This is called the antenna reciprocity theorem.

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Weighting field

A charge moving in a general material along x,(t).
The signal defined as the integral of the field along a path S.

Je(x, 1) = qx,(D8[x — X, ()]

No charge. A delta current along the same path S.

1) = 0, 8()

Vind(g) = / N E(x, w)ds = — I / E (x,0)J¢(x, 0)dV
X V

LS I, (®)

. q oo An extension for the weighting
yind) = - E, (x, ), t—1t)x, (tHdt — field method to the full extent of
wityg q
Qu J- Maxwell’s equations !
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Transmission line

We want to know the signal V(t) at the end of a transmission line
due to a charge moving radially inside the transmission line.

= () = Q, 8(t) =
DY

We remove the charge, place a delta current on the end of the line
and calculate the electric field inside the transmission line.

10/14/24

We assume that only TEM field modes are travelling along the
transmission line, which is true for frequencies lower than c/R. In this
case there are no field components along the z direction. The
potential Difference between the conductors can then be defined in a
unique way and we have

Er
E, (r,zt)=V(z1) v Ew(r) = —-Vo(r)
OPlpea=Vy  #Ol=g =0

The voltage V(z,t) is determined by the transmission line equations
for the given stimulus and the potential corresponds to the two-
dimensional static weighting potential of the central conductor.

yind(s) = -Qi / ) V(zg,t — t')ViEg(r(r'))X(r’)d:'

-1 / V(zg,t — ), (t"dt
Qy J-

. V(zy, w
Vin(@) = (@) - 222 = [ (@) Z()

w
The voltage induced on a transmission line by a point charge moving
radially at position z, can be calculated by first finding the induced
current on a grounded electrode with the electrostatic two dimensional
weighting fields and then placing this current as an ideal current

source on the transmission line at position z,,

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN
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Synchrotron radiation

2
(2o (-]
¢ C C
¥ des COSB rn rn
. ; E" (r,0) = =2 o(r-2)+Us(1-"2
o e- X (t) o w|(r’ ) 4re [ ( c )+ ¢ ( ¢ )]’

x '
Vi) Tﬂm Vi"d(t) U ds | 2 E* (r,0) = 0,
00006 SAodsE .

L °‘ﬂ L) = 0,60

z, Ex.5) < A Dipole weighting field
§ Bix.1) § Ey(x,1) o
: ’ : Egl(r,9)=—Q"’ sw[@(t—ﬂ)+ﬂs(t—ﬂ)
: ' w 4re 3 c c c
' }') : Y

Far Field approximation for large distances

ds
—u v Ey =0 E, =0 E;(rn=~ Qu 215’( ’).
X, () =| Asin(wy?) X, () =] Awgcos(wy?) drege” r c
A cos(wyt) —Aw sin(wyt)
V) = € / EZ, (v # 1 — ') Aw, sin(ayt’)dt’ with o = @y /(1 - fB)' For galactic magnetic ﬁelds. on tht'z orfier of 1nT,
Qy J-o the frequency , is only 176 Hz. For electrons with a kinetic energy E
Aegds | 1wy 1 w} cos(w?) the observed frequency is larger by a factor 1/(1 - §) ~ 2(E/m,c*)*. For
¥ Tazege? | pr2 sin(e?) - c pri-p) an electron with a kinetic energy of 5GeV, the frequency is increased
5 by a factor 2 x 10% so we measure radio waves of around 352 MHz.
o~ Aeds 1 w;_) cos(w?) for fprl The same expression describes the synchrotron radiation emitted
4”50 r ¢z (1-5) by an electron beam that is passed through an undulator with a
with @ = /(1 — f). ;vavil:zrfgﬂ; )10 and where the emitted radiation has a wavelength of
= 0 —_ .
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Askaryan effect

A
q(1) ; ) )
: yidy = - 25 [ g¢ t’@(f—t’—m)—i
: ® 4re a(t) c /] dt' 3
: ds P, ( ’ rn) rnd z
— - == [dt'qts(t—-t -—)—==
X dre 9(r) c c dt' 3
ds (Y r _I'n n’ . 2.
+E dt' q(t')é (t—t—T)m(zx-x—rz .
V() 4 Wocssrssessnssunmanss —
. ds q(t) 1 5.3
H E@t) = - [ 3—2(1—nﬂ)(i+nﬁ)‘ +
4ze | |1 —npcosd|’ r .
Lret
: . . + 4s a!r’q(:r')i3 -
A particle shower will provide an produce an 4re J_o r
ds 4(1) n

exponentially increasing number of charges particles, -
which produces a radio signal.

(np—@p-1)%)|

Iret

4re (|1 —npcosI|(1 —nfcosd) rc

Askaryan Radiation
Je(x, 1) = g(t)vé(x — xq(t)). We take g(t) = gexp (i—f)
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Bandwidth limit

Another advantage of the weighting field concept is the
implementation of the bandwidth limit:

Let us assume that the antenna signal will be processed by
an electronics chain with delta response f(t).

In the traditional calculation one calculates the radiation
produced by the particles, propagated the radiation through
the medium, folds it with the antenna characteristics and the
folds the signal with the linear processing chain.

In the weighting field concept, due to the linearity of the
system, one can immediately apply the bandwidth limit of the
electronics system to the weighting field, i.e. instead of
applying a delta function to the system one can directly apply
the electronics delta response f(t) to the antenna for the
calculation of the weighting field.

This way one uses the minimum amount of bandwidth in the
entire simulation.

d .
E° (r,0) = —2w?S sinf @(t— 2)+ s (t— Q)
w| dzre 3 c

v ()5 (-1

d
E (r,0) = — ZwdS cost o(r-=")+ s (- =2))
w| dge 3 c c c

Ej (r,6) = 0,

w0 = Gl () ()
- ()7 (-)

Ky = 22280 [1, (120 2 (- 27
Kb, (r, ) = ZwllMsind [77 (1= 20) + 2 (0= 20)]

4 r2
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The high-energy landscape of our universe

arXiv:2010.12279
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universe

high-energy neutrinos .. cosmic rays
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Radio Neutrino Observatory in Greenland (RNO-G)

First science-scale radio array targeting 2 710 PeV neutrinos
in the northern hemisphere

Textbook physics — neutrinos with
energies of 10s of PeV must exist!

Philipp Windischhofer
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Radio neutrino detection

Use Greenlandic ice as detector medium

Ice is

dense!
Good target material for weakly-interacting particles

Net electric charge of shower front

Transverse size of shower front smaller
than wavelength

Ice is clean and cold!

Very transparent to electromagnetic radiation
in the MHz - GHz band

f ~ 500MHz © 1 ~ 0.4m

Expect strong signals at high energies,
detectable over long distances
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Neutrino crossection vs. energy

Neutrino-nucleon cross section, 0S5 [10738 cm?]
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RNO-G

RNO-G: array design
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RNO-G: station design

Triangular station layout
with downhole and surface antennas

Horizontally- (Hpol) and
vertically-polarized (Vpol) dipole antennas

Power String

Hole = 100m deep in more-

homogeneous and radio-quiet ice o0m |
Polarization-sensitivity improves
direction-finding
Upward- and downward- -80m |
looking (directional!) log-periodic
dipole antennas (LPDAS)
-90m
Sensitivity to (down-going) cosmic rays s> i
— veto - |
100m -
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AN

Helper String 1

Helper String 2

Calibration
Pulser

Helper String

-97m |}
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The need for accurate signal simulations

Air showers
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Non-neutrino backgrounds and
radiation propagation effects must be understood

57



Index of refraction

Ratio to model
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Refractive index depends on depth
(pressure) and is not ‘smooth’ i.e.
there are seasonal snow layers.
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Weighting field for realistic ice geometry
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Signals from neutrino-induced showers

60

103
40
20
0 10_4
E
= —20
—-40 _10—5
—-60
—-80
0—6
—100 100 150 200 250 300 8
r(m]
£
. . >
Simulated signal from e
1018 eV hadronic shower W'

—

Philipp Windischhofer

=
5,
2
L3
1000}
Reflected
0 4/\/
—1000+ Direct
550 600 650 700 750

Time [ns]

800



Signals from neutrino-induced showers
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Signals from neutrino-induced showers
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Conclusions

The weighting field concept can be extended to the full extent of Maxwell’'s equations
and it allows an accurate calculation of signals in the most general type of detector.

For detectors where the quasi-static approximation applies, a full chain of simulation
using COMSOL/TCAD and Garfield++ has been established.

The weighting field concept is now also used for detection of radio signals from
particle showers.
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Conclusions

The weighting field concept can be extended to the full extent of Maxwell’'s equations
and it allows an accurate calculation of signals in the most general type of detector.

For detectors where the quasi-static approximation applies, a full chain of simulation
using COMSOL/TCAD and Garfield++ has been established.

The weighting field concept is now also used for detection of radio signals from
particle showers.

Signals, Noise and Signal processing in Particle Detectors, W. Riegler/CERN

65



10/14/24

Theorem, induced voltage

The voltage induced on an uncharged and insulated
conducting electrode by a point charge g at position x can
be calculated the following way:

Remove the point charge, put a charge Q,, on the
electrode in question while keeping all other electrodes
insulated and uncharged.

This defines the potential y,(x) and the induced voltage is

Vind(t) = &m(x(tn
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Relation between induced current and induced voltage

Vil (t) = &xn(x(t»

Qu _
000 = 2 3 el )
N N
() == um@u(t) Q) == cumVi
m=0 m=0
N .
_ Vznd(t)
ind _ ™m
() = mZ:o Cnm dt

The voltages induced on insulated electrodes
and the charges induced on grounded
electrodes are related by the capacitance
matrix.
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Electrostatic in dielectric media

V, =0

v

VIEX)Vex)] = —p(x)  ¢X)lx=a, = Va

A solution that satisfies the boundary conditions (and is therefore unique):
Ramo-Shockley theorem holds

V [e(x) Voo (x)] = —po(x) ©(x)|x=a, =0
Qn = % (x)E(x)dA for detectors with perfect
VIEE V()] =0 ¥u(x)lx=a, = Vildmn conductors embedded inside
N Crn = —% X))V, (x)dA insulating media !
Vi
p(x Z V_
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