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Intrinsic time resolution of silicon sensors
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In silicon sensors the signal edge is instantaneous (i.e. sub ps level)

• acceleration of electrons to 107cm/s in vacuum is 0.14ps

• passage of the particle through a 50um sensor takes 0.16ps

In Wire Chambers the electrons first have to move to the wires before an avalanche at the wire leads to an appreciable signal 

→ intrinsic resolution limit.

In RPCs and SiPMs the avalanche starts instantly, but it still takes some time until the signal reaches the threshold

→ intrinsic resolution limit.

→ The intrinsic time resolution of a silicon sensor is infinite (sub ps).

→ The time resolution in a planar silicon sensors without gain/LGADs is a question of signal/noise/electronics and specifically the 

Landau fluctuations within the electronics integration time !

Example: d = 300um, Vdep = 58V, V=1.2 Vdep = 68V

d0 = 330um, 𝜏e = 5.6ns, 𝜏h = 16.8ns 
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Processing of the detector signal

An ideal voltage amplifier, that produces an output voltage 

vout(t) = G × vin(t), where G is the (dimensionless) voltage-

gain of the amplifier. The input impedance of the amplifier is 

infinite.

An ideal current amplifier, that produces an output voltage signal v(t) = ki3(t). 

The ’gain’ k has dimension of Ω and it would be more precise to call this 

device a current to voltage converter or a transimpedance amplifier. The input 

impedance of the device is zero.

An amplifier is traditionally considered a device that produces an amplified copy of the input signal. 
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Processing of the detector signal

OP OP

An OPerational amplifier is a

device with 

- very high voltage gain, 

- very high input impedance 

- very high bandwidth, 

ideally all being infinite. 

G = V2/V1 = 1 + R2/R1 k = V2/I1 = −R 
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Processing of the detector signal

In most applications we are not interested in an exact copy of the input 

signal.

For applications where charge measurement is required one prefers long 

integration times (slower amplifiers) in order to integrate a large fraction 

of the detector signal. 

For timing purposes one typically wants fast amplifiers to reduce time 

walk and jitter effects. 

Many detector noise sources, like thermal noise, are ‘white’, meaning that 

a bandwidth limit will reduce the noise proportionally.

For a given detector signal there will be an optimum bandwidth limit that 

maximizes the signal to noise ratio.

For high rate applications, signal tail cancelation and baseline restoration 

are important issues in order to avoid signal pileup and baseline 

fluctuations. 

By limiting the bandwidth to the essential frequencies, the detector will 

also be less sensitive to external noise sources (pick-up …).

High rate wire chamber signals
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Processing of the detector signal

The art and science of electronics is a universe of its own.

The idea of the next two lectures is to collect the concepts that allow us to 

arrive at the electronics specification for a particular detector application.

The numerous ways of realizing the actual circuits are not discussed.
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More on signal theorems, readout 
electronics etc. can be found in this book →
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Processing of the detector Signal

We apply a given transfer function to the signal that maximizes the quality of the output that we are looking for (time, charge etc.).

We therefore want to specify the transfer function W(ω) and input impedance Zin(ω) to optimize our measurement.

W(ω)



The Fourier Transform of a time dependent signal f(t) is defined as

It expresses the signal as a superposition of sinusoidal waves of frequency f with amplitude |F(2π f)| and 

relative phases Arg[F(2π f)]. Example:
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Linear Signal Processing
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Linear Signal Processing
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Linear Signal Processing

The usefulness of these transformations for electrical circuit analysis is illustrated 

by this example. 

Voltages and currents in a circuit containing R, L, C elements are determined by 

applying Kirchhoff’s Laws, stating that the sum of voltages in every loop must be 

zero and the sum of the currents on every node must be zero. This analysis will 

therefore lead to a linear differential equation for the currents in the circuit. 

Writing the above relations in the Fourier domain, the circuit relations become 

algebraic equations. 

Instead of having to solve a set of coupled differential equations in the time 

domain we just have to solve a set of linear algebraic equations in the Fourier 

domain! 

In addition, due to the theorems stated above, many signal manipulations are 

strongly simplified when working in the Fourier domain. 

vR(t) = Ri(t)

vL(t) = L di(t)/dt

vC(t) = 1/C∫i(t)dt

VR(ω) = RI(ω) 

VC(ω) = I(ω)/iωC 

VL(ω) = iωLI(ω)



A linear device is defined by the following property: 

If the input signals i1(t) and i2(t) result in output signals v1(t) and v2(t), 

the input signal i(t) = c1i1(t) + c2i2(t) will result in the output signal v(t) = c1v1(t) + c2v2(t). 

The input signal i(t) and output signal v(t) of a linear, time invariant and causal device are related by a 

differential equation of the following form 

where the coefficients a and b are independent of time. The term ’time-invariant’ describes the fact that the 

relation between input and output signal is independent of time. 

For a ’causal’ system the output signal v(t) is zero as long as the input signal i(t) is zero. 

Performing the Fourier transform this equation is transformed into an algebraic equation with the solution 

and we have
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Linear Signal Processing
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Linear Signal Processing

The function W(ω) is called the transfer function of the system and we see that the transfer function of a 

linear time invariant system can be expressed by the ratio of two polynomials in the Fourier domain.

Separating the signal I(ω) and the transfer function W(ω) into the absolute value and the phase, indicates 

how the frequencies contained in the input signal are separately transformed in order to yield the output 

signal 

The sinusodial components of the input signal I are scaled by |W | and phase shifted by arg[W]. 

For very high frequencies we have 

A system where n > m is un-physical because it would result in infinite amplification at infinite frequency. 

We can therefore state that for the transfer function of a realistic linear device we have n ≤ m. 
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A nth order polynomial has n (real and complex) roots, so the transfer function W(ω) can be expressed as

The roots iω = z1, z2... are the zeros of W(ω) and iω = p1, p2... are the poles of W(ω). In general, zi and pi are 

complex numbers, some of the roots may be repeated. 

→ In the Fourier domain, the transfer function of a linear signal processing device can therefore be fully 

described by its poles and zeros.

A unit input signal I(ω) = 1 will result in the output signal V(ω) = W(ω). Returning to the time domain we have 

The inverse Fourier transform of the transfer function is therefore the output signal for a unit delta input signal 

which we call the delta response of the system. In the time domain we therefore have

The transfer function W(ω) and the delta response w(t) are two equivalent ways of describing a linear 

system. 

Linear Signal Processing
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Linear Signal Processing

Using partial fraction expansion, W(ω) with m ≥ n can always be written as a sum of terms with the form 

1/(iω − pi)
ki , where ki ≥ 0 are integers and the poles are complex numbers (pi =ai+ibi). 

In case ai > 0, the delta response tends to infinity for t → ∞, so the criterion for stability of a linear system is 

given by the requirement that the real parts of all poles of W(ω) must be negative. 

In case ai + ibi is a root of a polynomial, the complex conjugate ai − ibi is also a root of the polynomial. The 

terms appear therefore always in complex conjugate pairs, the imaginary part is cancelled and the delta 

response is therefore always real. 
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Example of the k = 2, 4, 6 and bi = 0. We will mainly discuss transfer functions with real poles. 

Linear Signal Processing
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CR, RC, Pole-Zero, Zero-Pole Filters

These filters are elementary in the sense that by cascading of these four filter types we can construct any 

desired transfer function W(ω) with real poles. 

CR RC

Pole-Zero Zero-Pole



CR RC
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CR, RC

At the frequency ω0 = 1/τ the input voltage 

is attenuated by 1/√2 ≈ 0.707 

and the phase shift between input and 

output signal is π/4 = 45°. 

CR = high-pass = differentiator

RC = low-pass = integrator
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CR RC

CR = high-pass = differentiator RC = low-pass = integrator

Step function input:

CR, RC



Same calculation in the Time domain. First calculate the delta response, i.e. the inverse Fourier transform of the transfer function:

and then convolute with the input signal:

→ same result (of course)
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CR, RC
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Pole-Zero, Zero-Pole Filters

Pole-Zero Zero-Pole

These filters turn an exponential signal with 

decay constant 𝛕1 into an exponential 

signal with decay constant 𝛕2

→ tail cancellation filter

Let’s send an exponential signal with time 

constant 𝛕1 through the filter.
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Tail cancellation
In case we want to eliminate the long tail of a signal in order to reduce signal pileup, we can proceed the following way:

In general signal tails do not have exponential form, like e.g. in wire chambers where the shape is 1/(t+t0).

We can approximate this signal to arbitrary precision by a sum of exponentials

Example of two exponentials:

Rewrite:

Applying a Pole-Zero Filter of form                                                                 the output is

→ We have removed the second exponential and are just left with the shorter exponential term.
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Tail cancellation
Using 3 exponentials for a wire chamber signal:

Using two Pole/Zero filters with the respective time constants we have

original signal

after 2 P/Z filters
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Cascading of circuit Elements

The transfer function of two cascaded circuit elements is therefore not simply equal to the product of the two individual 

transfer functions. 

In order to decouple the two circuits we must introduce a so called voltage buffer between them, which is an active 

device of infinite input impedance, infinite bandwidth and voltage gain G. Such a buffer produces an output signal which 

is an exact copy of the input signal scaled by G. Due to the infinite input impedance, no current is taken out of the first 

RC circuit and the transfer function indeed becomes the product of the individual transfer functions. 

A cascade of circuit elements with individual transfer functions W1(ω),W2(ω)...Wn(ω), that are decoupled by ideal 

voltage buffers, has a transfer function equal to the product 
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In order to realize a given bandwidth (peaking time, risetime …) of the signal processing chain, we look at two 

commonly used schemes, called the (RC)n and CR-(RC)n shapers.

Signal shaping, bandwidth limitation

The first one is called a ‘unipolar’ shaper and the second one is called a ‘bipolar’ shaper.



The delta response of the bipolar shaper integrates to zero:

Any signal processed by the bipolar shaper integrates to zero:

In physical terms, the zero in the transfer function at s = iω = 0 implies that DC signals are 

fully attenuated. Only sinusodial components with frequencies ω > 0 pass the circuit, and 

because all individual sinusodial components are bipolar the entire signal is bipolar. 
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Signal shaping, bandwidth limitation

unipolar

bipolar

unipolar

bipolar
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The rise time tr of a pulse is defined as the time taken for its leading edge to rise from 10% to 90% of the peak height. 

The peaking time tp of a pulse is defined as the time taken for its leading edge to rise from zero to the peak height. 

When we talk about the peaking time of an amplifier we mean the peaking time of its delta response. 

Vocabulary: Rise Time, Peaking Time

10%

90%

rise time tr

peaking time tp
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Vocabulary: Bandwidth Limit

In the frequency domain, an amplifier is characterized by the gain |W(iω)| and the phase shift arg[W(iω)] for 

each frequency. 

The bandwidth limit of an amplifier is defined as the frequency where the signal transmission has been 

reduced by 3 dB from the central or midrange reference value. 

A -3dB reduction corresponds to a power level of ≈ 0.5 and a voltage level equal to ≈ 0.708 ≈ 1/√2 of the value 

at the center frequency reference. 

The bandwidth limit of the RC lowpass filter is therefore given by fbw = 1/2π 𝛕 = 1/2π RC. 

unipolar

bipolar
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Shaping and baseline stability, e.g wire chamber signals

unipolar shaper bipolar shaper

unipolar & 2x pole/zero unipolar & 2x pole/zero + AC coupling

Bipolar shaping guaranties a 

stable baseline but produces a 

significant undershoot and can 

have slightly worse noise 

characteristics.

An unipolar shaper with a tail 

cancellation filter that does not 

remove ALL the long term 

components will result in an 

average offset of the baseline.

AC coupling cannot eliminate this 

offset, because in an AC coupled 

system the entire signal has to 

integrate to zero, so the baseline 

will be shifted below zero by an 

amount that depends on the 

occupancy.

The only way to stabilize the 

baseline without undershoot is a 

non-linear circuit element 

(‘Baseline –restorer’).
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Electronics processing of a detector signal

Frontend delta response:

Corresponding transfer function:

f(t)

h(t)

v(t)

Signal

Frontend output
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tp=0.5ns tp=1ns tp=2ns tp=5ns tp=10ns

f(t)

Electronics processing of a detector signal

v(t)

h(t)

If the peaking time tp becomes larger than the signal length, the peak of the output signal approaches the total charge.

Sometimes the peaking time is also called the ‘integration’ time, because it gives the time over which the input signal is ‘integrated’ or ‘averaged’ 
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Processing a signal i(t) by an amplifier with transfer function h(t) and peaking time tp that is much longer than the 

duration of i(t), the convolution integral can be approximated and the output pulse is given by 

v(t) = g h(t) Qtot

The peak of the output signal is gQtot. The output pulse height is therefore proportional to the total signal charge and 

such an amplifier is called charge amplifier. 

For some applications we want to preserve the speed of the signal and therefore use peaking times that are smaller 

than the length of the signal i(t). 

The peak of the signal will then not be proportional to the total charge, and we call the difference the ‘ballistic deficit’.

The ballistic deficit is defined as the difference between the amplifier output pulse-height for the input signal i(t) and 

the output pulse-height in case the entire input signal charge Qtot = ∫ i(t)dt would be contained in a delta current pulse 

Qtotδ(t). 

Ballistic deficit
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ATLAS muon chambers

The signals are up to 900ns long.

We are interested in the arrival time of the first electrons 

→ track position.

We are not interested in the total signal charge.

We use a fronted with peaking time O(15ns).



1.07 mm

0.25 mm

1.63 mm
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C2C2
C2C2

Anode w ire

Cathode s trips

(b)

        

C1

Cathode strip chamber: 

We are interested in the total signal charge for the best 

possible charge interpolation.

The same is of course true for silicon sensors.

Avalanche

W. Riegler/CERN36

Strip readout
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Centroid Time, (center of gravity time)

In case the electronics peaking time tp is longer than 

the signal duration T, the electronics output signal has 

• the same shape as the delta response

• a pulse-height equal to the total charge of the 

signal

• a ‘time displacement’ of this delta response by the 

center of gravity time tcog of the signal. 

→ An amplifier that is ‘slower’ than the signal 

measures the center of gravity time of the signal

Signal duration of T i.e. f(t) = 0 for t>T

Electronics peaking time tp >> T

We are interested in times t>T
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E = const

h

t

I(t)
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I(t)

I(t)

e

e

h
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t

Single e-h pair in silicon



Induced signal for different positions of the e-h pair.

giving a centroid time of

Let’s assume the z position has a uniform random distribution:

The variance of the centroid time represents the time resolution in case we 

use an amplifier peaking time that is larger than the signal duration.
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e

h

z=0 z=dz

Single e-h pair in silicon, centroid time
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3D sensor realising a parallel plate geometry, TimeSPOT

L. Anderlini et al., Intrinsic time resolution 

of 3D-trench silicon pixels for charged 

particle detection. JINST 15, P09029, 

2020.

D. Brundu et al., Accurate modelling of 

3D-trench silicon sensor with enhanced 

timing performance and comparison 

with test beam measurements. JINST 16, 

P09028, 2021.

d

Total charge from the 200um sensor but timing 
characteristics from a 25um sensor  !

→ 10-20ps achievable and 

indeed achieved !

Evaluation of the formula
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There are many different ways to correct for this slewing effect

• Constant Fraction discrimination

• Standard discrimination using time over threshold to correct for pulse-height

• Standard discrimination  + pulseheight to correct for pulse-height

• Standard discrimination  + total charge  to correct for pulse-height

• Multiple sampling and ‘fitting’ the know signal shape

• ….

Electronics ‘slower’ than the detector signal, time slewing

Delta response shifted by tcog and scaled by Q 

Signal normalized to same  amplitude → time

‘time slewing’
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A voltage amplifier processes a voltage signal presented at its input and is characterized by large input impedance. 

A current amplifier processes the current signal flowing into the amplifier and is characterized by low input impedance. 

In most detectors, the detector capacitance Cdet together with the input resistance Rin forms an ‘integration stage’ with 

bandwidth limit of fbw = 1/2πRinCdet which is undesirable in case one wants to preserve the fast signal. 

In order to preserve the chamber signal shape, the input impedance of the amplifier must therefore be small compared 

to all other impedances in the detector or equal to zero in the ideal case, which means that we use current amplifiers 

for readout of our detectors. 

If the bandwidth of the current amplifier is such that it integrates a significant fraction of the chamber signal, it is 

usually called a charge amplifier or ‘charge sensitive amplifier’. 

Vocabulary: Voltage, Current and Charge amplifier
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The filters discussed up to now transform an input voltage signal to an output voltage signal, and therefore the 

dimension of the transfer function is [W(ω)] = 1. 

The transfer function of a current amplifier that transforms a current input signal into a voltage output signal can 

be written as V(ω) = kW(ω)I(ω) where k has dimensions of V/A=Ω and W(ω) keeps the dimension 1. 

In the time domain the connection of input and output signal is 

The value w(tp) is the peak of the delta response w(t), and the dimensionless function h(t) is the normalized 

delta response. An input current pulse of i(t) = Qδ(t) results in an amplifier output peak voltage of v(tp) = g Q. 

We therefore call g the sensitivity of the amplifier which has the dimension V/C. 

Typical amplifiers have sensitivities in the range of 1-50 mV/fC. 

Sensitivity of a charge amplifier

g, h(t)
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Input circuit

The amplifier is characterized by

- input impedance Zin(ω) 

- sensitivity g (V/C)

- normalized delta response h(t) or H(ω)

The current flowing into the amplifier has to be calculated by placing the 

induced currents on the input network that represents the detector.

The amplifier output is then
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Tomorrow
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In most applications we are not interested in an exact copy of the input signal.

For applications where charge measurement is required one prefers long integration times (slower amplifiers) in 

order to integrate a large fraction of the detector signal. 

For timing purposes one typically wants fast amplifiers to reduce time walk and jitter effects. 

For high rate applications, signal tail cancelation and baseline restoration are important issues in order to avoid 

signal pileup and baseline fluctuations. 

The delta response or the corresponding transfer function in the frequency domain fully characterize a linear signal 

processing chain.

In general, a linear signal processing system is completely defined by the poles and zeros of the transfer function.

Conclusion
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Amplifier output for the unipolar shaper with n = 4 and various values of tp /t0 = 1, 10, 30, 150. The longer 

the peaking time, the larger is the signal, because more signal charge is integrated.

For tp larger than the total signal length, the peak approaches it’s maximum.

Ballistic deficit


