

Short proton bunches for AWAKE: Simulation studies @ CERN

Jake Flowerdew, Alexandre Lasheen, Heiko Damerau

30/09/2024

Outline

- RF manipulations to shorten bunches
- Quadrupole pumping for short bunches
- EiC quadrupole pumping model (F. Willeke)
 - Benchmarking zero intensity
 - Adding intensity effects
- SPS quadrupole pumping model
 - Short bunches for AWAKE
- PS quadrupole pumping measurements
- Summary and Further work

Context: Bunch rotation for AWAKE

- Currently SPS uses a non-adiabatic double voltage jump to rotate bunches for AWAKE.
- This rotates a τ_b (4 σ) = 1.3 ns $\rightarrow \sim 0.5$ ns
 - $\tau_b (1\sigma) = 325 \ ps \rightarrow \sim 125 \ ps$
- Compression factor of 2.6 ($N_p = 3 \times 10^{11}$).
- > F. Willeke proposed an RF manipulation to create $\tau_b (1\sigma) = \sim 1 \, ps$ with resonant quadrupole excitation.
 - Compression factor of 10-15.
- Goal of this study is to have a first, preliminary look at intensity effects.

Two main types of bunch rotation @ CERN

Non-adiabatic voltage jump

Quadrupole Pumping @ BNL

- RF voltage is modulated $(2f_s)$ to excite quadrupole oscillations.
- Performed in the Booster before transfer to Alternating Gradient Synchrotron (AGS) at BNL.
 - Goal was to minimise momentum spread.
- Not currently utilised at CERN.
- F. Willeke proposes this RF modulation, with the addition of linearisation, to create short bunches.

PERFORMANCE OF THE AGS TRANSITION JUMP SYSTEM*

L.A. Ahrens, J.M. Brennan, J.W. Glenn, T. Roser, W.K. van Asselt[#], BNL, Upton, NY

Figure 1: The wall current monitor signal showing the peak current density variations in the Booster before transfer to the AGS. Horizontal scale is 1 ms/s

L. A. Ahrens, J. M. Brennan, J. W. Glenn, T. Roser and W. K. van Asselt, "Performance of the AGS transition jump system," *Proceedings of the 1999 Particle Accelerator Conference*

Quadrupole pumping with linearisation: F. Willeke

- RF voltage modulated to excite quadrupole oscillations.
- Additional harmonics to linearise rotation.
 - > Smaller synchrotron frequency spread \rightarrow less tails.
 - Greater bunch compression.

Creating short proton bunches by resonant quadrupole excitation - F. Willeke

Toy model with RHIC/ EiC parameters

E = 600 GeV	
C = 3887 m	
$N_p = 10^{11}$	
$f_{rev} = 7.713 \times 10^4 \text{ Hz}$	
$\delta_p=0.001$	
$\sigma_b = 12.685 mm (42.3 \mathrm{ps})$	-
$\alpha_{mc} = 0.5 \times 10^{-4}$	
$U_{RF} = 254 \text{ MV}$	
$(U_{Max} = 900 \text{ MV})$	
$f_{RF} = 200 \text{ MHz}$	
h = 2593	
	$E = 600 \text{ GeV}$ $C = 3887 m$ $N_p = 10^{11}$ $f_{rev} = 7.713 \times 10^4 \text{ Hz}$ $\delta_p = 0.001$ $\sigma_b = 12.685 mm (42.3 \text{ ps})$ $\alpha_{mc} = 0.5 \times 10^{-4}$ $U_{RF} = 254 \text{ MV}$ $(U_{Max} = 900 \text{ MV})$ $f_{RF} = 200 \text{ MHz}$ $h = 2593$

Creating short proton bunches by resonant quadrupole excitation - F. Willeke

- Possible to get short bunches (excluding intensity effects).
- > May require extreme RF parameters:
 - Large voltage (900 MV) + modulation.
 - Higher harmonics linearization.
 - > Low momentum compaction factor ($\alpha_{mc} = 0.5 \times 10^{-4}$).
- Benchmarked in Mathematica.

Compression factor of 13.4

Quadrupole pumping RHIC/ EiC BLonD model - No intensity effects

. ÉRN

Adding Intensity Effects to RHIC/ EiC model

Disclaimer

- Very preliminary study (~2 weeks).
- Needs further investigation and benchmarking.
 - Bunch stability over longer time periods (~10k turns), acceleration etc.

Assumptions

- Single bunch.
- Assuming a similar impedance model to SPS.
- Not including impedance of higher harmonics RF systems (used for linearisation).
- Neglecting multi-turn wakes, IBS, e-cloud etc.

Overestimating Impedance

SPS peak voltage: 15 MV

EiC peak voltage: ~800 MV

Quadrupole pumping RHIC/EiC + Impedance (SPSx50)

Bunch unstable due to collective effects.

CERN

Scaling 200 MHz cavity impedance

SPS peak voltage: 15 MV

EiC peak voltage: ~800 MV

Quadrupole pumping RHIC/EiC + Impedance (200MHz x50)

SPS quadrupole pumping model

Toy model in SPS

Beam Energy	E = 400 GeV
Circumference	C = 6911.5 m
Number of ppb	$N_p = 3 \times 10^{11}$
Revolution frequency	$f_{rev} = 43.4 \text{ kHz}$
Energy spread	$\delta_p = 0.0009$
Bunch length (4 σ)	$\tau_b = 1.3 ns$
RF voltage	$U_{RF} = 15 \text{ MV}$
RF frequency	$f_{RF} = 200 \text{ MHz}$
RF harmonic	h = 4620

Initial bunch size in bucket

SPS – No intensity effects (linearised)

SPS + Impedance (linearised)

CÉRN

SPS + Impedance (non-linearised)

*Better definition of bunch length

Compression factor of $14.9^* \rightarrow \text{more populated tails.}$

CÉRN

Quadrupole pumping measurements in the PS

- Initial proof-of-principle tests were done with beam in the PS.
- Single bunch, moderate intensity, no RF linearisation.

Compression factor of 5.5.

Comparison to conventional phase-jump bunch rotation

Compression factor of 5.

- Linearised quadrupole pumping is an interesting scheme for creating short bunches in theory.
- However, extreme RF parameters may be needed:
 - ≻ Large voltage (900 MV) + modulation.
 - > Higher harmonics for linearization.

> Low momentum compaction factor ($\alpha_{mc} = 0.5 \times 10^{-4}$).

- Intensity effects play a crucial role in determining how short we can make bunches.
- Initial simulations show quadrupole pumping could be used in SPS for AWAKE bunches.

Future Work

Lots of further work to be done...

- Further benchmarking and studies.
- Thorough study of the stability of the initial bunch with intensity effects.
- Additional intensity effects (multi-turn wake, IBS, e-cloud etc.).
 - Transverse collective effects.
- Delivery of small longitudinal emittance bunches from injector chain.

Back up slides

Increasing intensity, halving bunch length

 $\sigma_b=6~mm$, $N_p=3 imes 10^{11}$

Bunch unstable due to collective effects.

CERN

Bunch rotation using double jump scheme*

BLonD simulations of bunch rotation

 \rightarrow High V_{200} and V_{800} before jumps and short reproducible time with low RF voltages guarantee beam stability → This option requires modification 800 MHz LLRF system (synchronized RF OFF with extraction timing)