hhu,

Options for proton-driven particle acceleration and simulation tools

Alexander Pukhov Heinrich-Heine-University Dusseldorf

01.10.2024

- Explicit electromagnetic PIC codes
- Lorentz boost
- Quasi-static approximation
- Hybrid methods

Virtual Laser Plasma Lab

A. Pukhov, J. Plasma Phys. 61, 425 (1999)

Plasma or neutral gas Gas of an arbitrary element can be used.

The code VLPL is written in C++, object oriented, parallelized using MPI for **Massively Parallel** performance **10⁹ particles and 10⁸ cells** can be treated

Advanced physics & numerics

Fields	Particles
$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j}$	$\frac{d\mathbf{p}}{dt} = q\mathbf{E} + \frac{q}{c\gamma}\mathbf{p} \times \mathbf{B}$
$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$	$\gamma = \sqrt{1 + \frac{p^2}{(mc)^2}}$

3

- Inelastic processes
- Radiation damping
- QED effects
- hybrid hydro model
- quasi-static approximation

Basic equations: full Maxwell

Ampere's law 1 ∂**B** Faraday's law $c \partial t$ Poisson's eq. $\nabla \cdot \mathbf{E} = 4\pi\rho$

No magnetic dipoles

 $\frac{1}{c}\frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \frac{4\pi}{c}\mathbf{j}$ $= -\nabla \times \mathbf{E}$

 $\nabla \cdot \mathbf{B} = 0$

Dynamic equations

Static equations

Locality of the equations

Only particles within the radius of $c\tau$ communicate to each other at every time step τ .

This allows for efficient parallelization using domain decomposition

No global communications

Implementation of a PIC code Parallelization: domain decomposition

Full simulation domain

3d domain decomposition

Distribution function and kinetic equation

N-particles distribution function:

 $F_N(t,\mathbf{r}_1,\mathbf{p}_1,...,\mathbf{r}_N,\mathbf{p}_N)$

Nearly ideal plasma: single particle distribution function:

 $f(t,\mathbf{r,p})$

$$\frac{\partial f(t, \mathbf{r}, \mathbf{p})}{\partial t} + \frac{\mathbf{p}}{m\gamma} \nabla_{\mathbf{r}} \cdot f(t, \mathbf{r}, \mathbf{p}) + q \left[\mathbf{E} + \frac{\mathbf{p}}{mc\gamma} \times \mathbf{B} \right] \nabla_{\mathbf{p}} \cdot f(t, \mathbf{r}, \mathbf{p}) = St$$

How to solve this equation?

Eulerian approach, FDTD "Vlasov codes"

Very inefficient: a lot of empty phase space has to be processed.

However, temperature effects may be described more carefully. Low noise. May be subject to numerical diffusion.

Vlasov is a transport Eq in 6D space

Characteristics of the Vlasov Eq. coincide with the equations of motion

Thus, we just push the numerical macroparticles in self-consistent electromagnetic fields

Sampling phase space: numerical macroparticles

Computationally efficient: only filled parts of phase space have to be processed.

However, temperature effects are poorly described, or require very many particles. Noisy as $N^{1/2}$.

Quantify importance of QED with parameter

Quantum electrodynamics (QED)

• $E_{\rm cr} \approx 1.3 \times 10^{18} \, {\rm V/m}$ ("Schwinger field")

- $\chi \rightarrow 1$: hard-photon emission, electronpositron pair creation, ... become important
- $\chi \approx 1600$: fully non-perturbative QED
 - no experiments
 - only preliminary analytical studies

V. Ritus, *Ann. Phys.* **69**, 555 (1972) V. Yakimenko et al., *PRL* **122**, 190404 (2019)

Modeling QED effects

Monte-Carlo QED loop (Photon emission)

1. Randomized photon energy

$$\epsilon_{\gamma} = r_1 \epsilon_e$$
 , $r_1 \in [0,1]$

2. Calculate probability rate

$$\frac{\mathrm{d}W_{\mathrm{rad}}}{\mathrm{d}\epsilon_{\gamma}} = -\frac{\alpha m^2 c^4}{\hbar \epsilon_e^2} \left[\int_x^\infty \mathrm{Ai}(\xi) \,\mathrm{d}\xi + \left(\frac{2}{x} + \chi_{\gamma} \sqrt{x}\right) \mathrm{Ai}'(x) \right]$$

3. Probability of decay process

$$W_{\rm decay} = \frac{dW_{\rm rad}}{d\epsilon_{\gamma}} \epsilon_e \Delta t$$

4. Second random number for photon emission

 $r_2 \ge W_{
m decay}$, $r_2 \in [0,1]$

(Similar procedure for electron-positron pair creation) N. E

Modeling QED effects

Modified PIC cycle

Beam-beam collisions

- Utilize particle beams instead of intense laser fields
- Particles of one beam experience the strong fields of the other
- Reach fields $> E_{cr}$ in reference frame
 - Creation of secondary particles
 - Study of non-perturbative QED possible

Disruption parameter *D* quantifies beam distortion

- Generally: small disruption parameter wanted
 - Reduce interference in precision measurements
- Beamstrahlung: radiation reaction losses due to bent particle trajectory

Particles are subject to betatron oscillations during beam collision

Disruption time: characteristic time for particle to reach central axis

Usually unwanted for colliders

Goal: find expression for disruption parameter with RR

Beamstrahlung-enhanced disruption

 $D_0 = \frac{\omega_b^2 \sigma_z^2}{2 \gamma c^2}$

15

Beamstrahlung-enhanced disruption

Collision of two cylindrical beams (Movie)

A. Samsonov et al., NJP 23, 103040 (2021)

pukhov.tp1.hhu.de

Beamstrahlung-enhanced disruption

Results

- For $\chi_0 = 10$: high yield of electron-positron pairs
 - Formation of a QED cascade
- Simulations with QED exhibit kink instability
 - QED effects are probabilistic → changes in symmetric particle distribution
- Requirement $D \to 0^{\circ}$ poses restrictions on beam length and diameter
 - Considering RR strengthens restrictions
- Estimate for disruption parameter in QED regime ($\chi_0 \gg 1$):

$$\frac{D}{D_0} \approx 30.8 (\epsilon_b [100 \text{ GeV}] n_e [10^{21} \text{ cm}^{-3}] r_b [\mu\text{m}]^4)^{-1/3}$$

A. Samsonov et al., NJP 23, 103040 (2021)

Universität Düsseldorf

PIC codes for plasma-based acceleration

Bubble regime

A.Pukhov & J.Meyer-ter-Vehn, *Appl. Phys. B*, **74**, p.355 (2002)

 Plasma wake fields offer a promising alternative to conventional particle accelerators

- Ultra-short laser pulse or particle bunch creates driven plasma oscillation
- Secondary particles can become accelerated in the wake
- Accelerating field reaches hundreds of GV/m
- Simulations carried out with Virtual Laser Plasma Lab

The plasma acceleration has several very disparate scales

- 1. Small scale: laser wavelength λ or plasma wavelength λ_{p}
- 2. Medium scale: driver length
- 3. Large scale: acceleration length $L_A = 10^4 \dots 10^7 \lambda$, λ_p

Analytical methods to bridge the scales gap

First-principles PIC codes are universal but computationally expensive. Efficient analytical methods exist to handle the multi-scale problems.

- 1. Envelope approximation for the laser removes the laser wavelength λ scale
- 2. Quasi-static approximation explicitly separates the fast coordinate $\zeta = z ct$ and the slow evolution time $\tau = t$

Any approximation means some physics is neglected though...

01.10.2024

It is assumed that the driver does not change during the time it passes its own length

01.10.2024

Quasi-static approximation Field equations

We change variables to the fast coordinate $\zeta = z - ct$ and the slow evolution time $\tau = t$ in Maxweel Eqs.:

and neglect
the time derivatives
in (1) and (2), so that $\nabla \times B = j + \partial_t E$ (1)
 $\nabla \times E = -\partial_t B$ (2)
 $\nabla \cdot B = 0$ (3)
 $\nabla \cdot E = \rho$ (4)

Thus, the quasi-static approximation cannot treat radiation anymore!

In quasi-static codes, one seeds a single layer of particles at the leading edge of the simulation box and pushes them through the driver

Compare quasi-static qs-VLPL3D vs explicit VLPL3D

Compare quasi-static VLPL3D vs explicit

Challenges for full scale simulations

What limits the time- and space-steps

- Witness betatron frequency limits the slow time step: injecting 1GeV witness limits times step to $c\tau \le 30$ mm for 300m acceleration distance we need ~10⁴ time steps
- The simulation box must be ~5 plasma wavelengths because of dephasing
- Step in ξ must be small enough, $\Delta \xi k_p \sim 0.1$
- Because of the low normalized emittance, $\varepsilon_n \sim 100$ nm, the witness bunch pinches to very small transverse sizes. The radial resolution must be ~ 10 nm
- Reliable results require full 3D simulations, or at least quasi-3D.
 2D radially symmetric should be considered with a grain of salt

Available codes

- Full electromagnetic codes: VLPL3D, OSIRIS, WARP-X...
- Quasi-3D full electromagnetic codes: FBPIC
- Full 3D quasi-static codes: QV3D, HIPACE++, LCODE3D
- 2D radially-symmetric quasi-static codes: LCODE, WAKE-T
- quasi-3D quasi-static PIC code: QUICKPIC (?)

All codes have their advantages and caveats...

What are we simulating?

Alternative configurations

We know how to accelerate protons to multi-TeV energies

This energy must be converted into energy of leptons

- Single stage acceleration
- Wake field acceleration

Options for acceleration

Dielectric structures Corrugated metallic pipe Plasmas ~1 GV/m 1GV...10TV/m ~100 MV/m Wakefield Electron beam Pulse length cr

30

Interaction of Extremely Intense Flows of Electromagnetic Energy and QED Processes in Supercritical Fields

pukhov.tp1.hhu.de

BBU limits wakefield in structures

Tail of the bunch is attracted to the wall

Fig. by Alexandr Moiseevich Altmark

The main limit for SWFA: Beam Break Up (BBU)

Driver and witness in a corrugated waveguide

VLPL3D simulation

Strong focusing (and chirp) to stabilize the BBU

1.5 T quadrupoles can provide (may be) up to 100 MV/m stable accelerating fields

S. S. Baturin and A. Zholents Stability condition for the drive bunch in a collinear wakefield accelerator Phys. Rev. Accel. Beams **21**, 031301 (2018)

Let us decouple acceleration and focusing We use the structure to support accelerating wake while plasma provides focusing only!

Plasma can provide focusing strength as high as

$$\frac{B}{r}$$
 [T/mm] $\approx 6 \cdot 10^4 \sqrt{\frac{n_e [\text{cm}^{-3}]}{10^{15}}}$

when all electrons are swept away from the plasma channel

Narrow plasma column: stabilization

SWFA and Plasma

The leading bunch scatters away electrons off the narrow plasma column

The trailing bunches stay stable and tightly focused by the ion column

How to create the plasma column?

Driver with triangular profile

Wake field:
$$E(\xi) = \int_0^{\xi} j_0 \frac{\xi'}{\sigma_z} \cos(\xi - \xi') d\xi' = j_0 \begin{cases} \frac{1}{\sigma_z} (1 - \cos \xi), & \xi < \sigma_z \\ \sin(\xi - \sigma_z), & \xi > \sigma_z \end{cases}$$

Triangular drivers with length $\sigma_z \gg 1/k_p$

1

can excite wakes with large transformer ratios

$$R = k_p \sigma_z \gg 1$$

Positions are open at Dusseldorf Uni

Positions at Ph.D. and PostDoc level are open at HHU, Dusseldorf

- Focus on Relativistic Plasma Simulations
- If interested, please, contact

pukhov@tp1.hhu.de