Positron acceleration in plasmas

Severin Diederichs

EP-SFT

01.10.2024

Proton-beam-driven Positron acceleration in plasmas

Severin Diederichs

EP-SFT

01.10.2024

Hollow core plasma channel works for both e^- **and** e^+

Hollow core plasma provides **accelerating, but no focusing fields**

requires **external focusing for stability**

Schroeder et al., PRL 82, 1177 (1999) Lee et al., PRE 64, 045501 (2001) Gessner et al., Nat. Comm. 7 11785 (2016) Lindstrøm et al., PRL 120, 124802 (2018)

Proton-beam-driven positron acceleration up to TeV in the hollow core plasma channel

Driver:

 10^{11} protons 2 TeV, $\Delta P_z/P_z = 0.1$ $\sigma_z = 100 \mu m \sigma_r = 430 \mu m$

Witness: $5⁹$ positrons $\sigma_z = 25 \ \mu m \ \sigma_r = 50 \ \mu m$ $\epsilon_n = 1$ mm-mrad

Plasma: $n_0 = 5^{15}$ cm⁻³ $r_0 = 75 \mu m$

Yi et al., Sci Rep 4, 4171 (2014)

Proton-beam-driven positron acceleration up to TeV in the hollow core plasma channel

Red: full bunch Blue: "core" bunch

Yi et al., Sci Rep 4, 4171 (2014)

Hollow core plasma channels intrinsically unstable

Misaligned beams are deflected

Experiments extremely challenging, 25 cm hollow core plasma channel enabled 70 MeV/m acceleration

Schroeder et al., PRL 82, 1177 (1999) Lee et al., PRE 64, 045501 (2001) Gessner et al., Nat. Comm. 7 11785 (2016) Lindstrøm et al., PRL 120, 124802 (2018) Gessner et al. arXiv 2304.01700 (2023) severin.diederichs@cern.ch

Asymmetric drive beams stabilize hollow core plasma accelerator

Quadrupole moment: Drive beam hits channel wall in a **controlled** manner

Asymmetric drive beams stabilize hollow core plasma accelerator

0

50 (b) (a) (c) 100 $\begin{vmatrix} 10 \\ \underline{5} \end{vmatrix}$ [um $x[µm]$ Quadrupole moment: 0 Λ Drive beam hits channel wall \rightarrow $\overline{\mathsf{V}}$ -100 symmetric asymmetric in a **controlled** manner symmetric, offset in x beam beam asymmetric, offset in x asymmetric, offset in y 0.1 200 200 0.4 400 0400 $0₀$ 0.2 $\xi[\mu m]$ $s[m]$ ξ [μ m]

100

 $n_e[n_0]$

10

 $n_{\text{driver}}[n_0]$

Stabilizes drive beam in hollow core channel!

Zhou et al., PRL 127, 174801 (2021)

High-charge, low energy spread positron acceleration shown

Zhou et al., PRL 127, 174801 (2021)

PEEP beam parameters are challenging

Beam parameters: $Q = 2 \times 10^{10} e^+ \approx 3.6 \text{ nC}$ $\epsilon_n = 100$ nm

 $E_{max} = 125$ GeV

Strongly nonlinear wakefields, quasilinear and linear regime will collapse

PEEP beam parameters are challenging

Beam parameters: $Q = 2 \times 10^{10} e^+ \approx 3.6 \text{ nC}$ $\epsilon_n = 100$ nm E_{max} = 125 GeV

Strongly nonlinear wakefields, quasilinear and linear regime will collapse

Embrace the nonlinearity

Plasma wakefield accelerators enable high-quality, highgradient *electron* **acceleration**

The electron spike at the back of the bubble enables positron acceleration

High-density electron cusp Focusing field for positrons

CÉRN

Weaker blowout is preferable

Lotov, PoP 14, 023101 (2007)

Weaker blowout is preferable

Theory of beamloading in Zhou et al. arXiv 2211.07962 (2022)

2. Electron filament provides strong focusing and accelerating fields **Focusing field only exists due to beamloading!**

Lotov, PoP 14, 023101 (2007)

1. High-density positron bunch attracts plasma electrons

CERN

Optimal beam loading enables excellent parameters

Density catastrophe, fields converge extremely slowly!

Density catastrophe, fields converge extremely slowly!

Peak density limited by temperature

Temperature rapidly accelerates convergencers

CÉRN

Temperature rapidly accolorates convergences is required for

Fields in electron filaments of cold plasmas show numerical artifacts at high resolution.

Be very careful with cold plasmas for positron acceleration!

Temperature strongly modifies and linear

Temperature strongly modifies and linearizes focusing field

If we had a beam that fits into the linear region, we could preserve it's emittance!

Beam emittances of ~ 100nm required. **Simulations only achievable with mesh refinement!**

Mesh refinement in HiPACE++ allows for simulating collider-Mesh refinement in HiPACE++ allows for simulating colliderrelevant plasma accelerators relevant plasma accelerators

Mesh refinement in HiPACE++ allows for simulating colliderrelevant plasma accelerators

Same setup as Zhou et al. arXiv 2211.07962 (2022) except:

- **200 nm emittance**
- **50 eV electron temperature**
- **80x higher transverse resolution**

Mesh refinement in HiPACE++ allows for simulating colliderrelevant plasma accelerators

Same setup as Zhou et al. arXiv 2211.07962 (2022) except:

- **200 nm emittance**
- **50 eV electron temperature**
- **80x higher transverse resolution**

Stability seems to be an issue…

- Hosing rises from numerical noise
- Strong coupling between fields and witness beam due to absence of focusing field *without* beam

Scheme has very promising numbers, longitudinal and transverse stability need to be investigated.

CERN

Temperature linearizes focusing field

Unloaded wakefield in a plasma column

Temperature linearizes focusing field and flattens accelerating field

Wakefields loaded with same Gaussian bunch as before

Temperature reduces emittance growth and slice energy spread

Emittance grows still by 10% at 50 eV because beam samples too much of the nonlinear field… Let's look at collider-relevant emittances!

10s of nanometer emittance preserved to 1 %

Mesh refinement reveals the **"positron miracle"**:

With a temperature, a lower emittance can be better preserved, while simultaneously achieving a lower slice energy spread and maintaining the same charge

10s of nanometer emittance beams induce ion blowout

Wake persists despite $n_b/n_0 \gg n_e/n_0$

CÉRN

10s of nanometer emittance beams induce ion blowout

Wake persists despite

Roadmap to PEEP positron acceleration?

- \triangleright Proton-driven inverse blowout has a wider electron trajectory spread; Let the drive beam pinch!
- \triangleright Hope for a 2nd positron miracle: Try an even lower emittance witness beam to blow away the ions, use a warm plasma
- \triangleright Be careful with instabilities, focusing fields are required before beamloading

Warning:

dephasing much worse for positrons…

Supplemental material

severin.diederichs@cern.ch

CÉRN

Luminosity-per-power comparison of schemes

Cao et al, PRAB 27, 034801 (2024)

Electron witness bunch elongates plasma electron spike

Warm plasma (72 eV) spreads the electron filament

Wang et al. arXiv 2110.10290 (2021)

Similar properties as in the plasma column can be achieved

Linear focusing fields! Linear focusing fields! A lot of potential for optimization! => emittance preserved < 0.9 µm

1.4% rms energy spread without beamloading

Wang et al. arXiv 2110.10290 (2021)

Similar setting with laser driver demonstrated

- Very simple setup
- High gradients: 100 GV/m fields
- A lot of potential for optimization

Liu et al. (arXiv 2207.14749 2022)

CÉRN

High-charge, low energy spread positron acceleration shown

Zhou et al., PRL 127, 174801 (2021)

Temperature smoothes the fields again, reduces emittance growth

Temperature mitigates emittance growth

Mesh refinement in HiPACE++ allows for simulating colliderrelevant plasma accelerators relevant plasma accelerators

Full mesh refinement: Full mesh refinement:

- Fields are solved with nonzero Dirichlet BC Fields are solved with nonzero Dirichlet BC
- Particles live on all meshes and deposit currents up to the highest level available • Particles live on all meshes and deposit
currents up to the highest level available
• Values of outer cells of level higher level are
- interpolated to ensure smooth currents

severin.diederichs@desy.de **Page 21** severin.diederichs@cern.ch