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Beyond eikonal: matrix elements of SM and New Physics

in lepton pair production

Status and perspectives

Z. Was∗

∗Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

• In Cracow since more than 40 years now, Monte Carlo programs, phenomenology tools for

accelerator experiments are developed.

• In presentation focus was always on practicalities. Principles foundations were left behind.

For example our LEP time programs, formal documentation was published many years after

use of programs was stopped. Actually, final precision data papers were published later.

• It is common opinion that Monte Carlo is bound to rely on approximation and remain

inferior to analytic calculations.

• Foundations are rarely underlined and are rarely appreciated even by devoted users.

• Now is a good time to contest → look into principles: new precision challenges of FCC and

challenges of manpower/expertise continuity.

My aim is to argue that Monte Carlo techniques are based on strict mathematical rules.

At least that it can be done like that. My talk is of 30 mins, NOT of 30 hours.
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Introduction, its keyword: eikonal 2

• I plan to address several people lifetime effort.

• How this can be of help for future efforts?

• Selected aspects, formal proofs left to long papers.

• Approach backbone eikonal restricted QED . It is (i) solvable,

(ii) used in many Monte Carlo designs (iii) SM amplitude level

perturbation results can (and must) be represented as

corrections to their eikonal parts.

• NO eikonal approximation in use.

• My talk is addressed to people who may continue efforts

toward precision horizons as required e.g. by FCC.

• Invitation for further studies, reading....
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Introduction, projects. 3

• Our programs, like KKMC for e+e− → ll̄nγ, Tauola for τ lepton decays, photos for

bremsstrahlung in decays of any particle or resonance, TauSpinner for weights modifying pp

collision samples, imprinting genuine weak corrections, some spin effects or New Physics,

became essential for LEP and/or LHC phenomenology.

• Purpose of Monte Carlos: generate series of events including detector response models

first. Then compare with results of measurements. Any agreement extend theory applicability,

any discrepancy point to New Physics or to experimental or theoretical ambiguities.

• At present these tools are used e.g. in evaluation of W mass measurement ambiguities,

where tension between Tevatron and LEP/LHC measurements take place. In FCC feasibility

studies, in phenomenology work of Belle II. For g − 2, ... Previously in precision tests of SM

at LEP, Higgs discovery at LHC... Higgs CP sensitive observables using Machine Learning

versus optimal variables. Ambiguities for physics, ambiguities for Open AI google software.

• Applications outside accelerator physics, e.g. in cosmic rays experiments.

• Tower of theories: eikonal QED,→ QED,→ (contact interaction) → EW → SM

• Preceding level has to provide defined parts of the next level amplitudes.

Tension: in lagrangian all fields masless at first.

Z. Was Cracow, January, 2025



Phase space first 4

• Tower of steps for phase space parametrization:

• Riemann cube of manifolds coordinates (random numbers).

• n-body phase space manifolds (phase space slots) of 2,3,4,... states.

Phase-space Jacobians.

• Relating manifolds of distinct multiplicity. CW-complexes; triangulation along lower

dimensionality (induced by infrared singularities) phase-space manifolds.

• Match phase space and matrix elements soft/collinear singularities.

• Multi channel singularity presamples.

• Variable number of particles.

• Tangent space formulation and definition of projections.

⋆ Beware: match ME singularities with phase space Jacobians minima.

⋆ Start: one dimensional crude distribution with peaks for resonances.

⋆ Fully differential crude distribution.
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Phase space first 5

KKMC follow textbook principle “matrix element× full and exact phase space”

�

Phase Space
Low level
Monte Carlo

Model dependent
Matrix element

CEEX:O(α2)

CEEX:O(α1)

CEEX:O(α0)

EEX:O(α1)

EEX:O(α2)
EEX:O(α3)

Entry

Exit

Ph.Sp.

M.El.

.

• Phase-space Monte Carlo simulator is a

module producing “raw events” (includ-

ing importance sampling for possible in-

termediate resonances/singularities).

• Library of Matrix Elements; input for “ME

weight”; independent module.

• For Matrix Elements approximations OK.

Never for phase space.

• Represent approximations exactly:

only then ME weights are mathematically

sound.

• Lots of technicalities collected in Phys.

Rev. D41 (1990) 1425.

• Solutions useful for New Physics too!

• All our programs follow this paradigm.
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(i) Phase-space 6

Lipsn+1 → Lipsn

Orthodox Lorentz-invariant phase space (Lips)!

dLipsn+1(P ) =

d3k1
2k01(2π)

3
...

d3kn
2k0n(2π)

3

d3q

2q0(2π)3
(2π)4δ4

(

P −
n
∑

1

ki − q
)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
d3k1

2k01(2π)
3
...

d3kn
2k0n(2π)

3
(2π)4δ4

(

p−
n
∑

1

ki

)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
dLipsn(p→ k1...kn).

Introduce factor equal 1: d4p of four-vector p, times δ4
(

p−∑n
1 ki

)

, and another

factor equal 1, integration variable dM1 times δ
(

p2 −M2
1

)

.
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(i) Phase-space 7

Phase Space Formula of Photos

dLipsn+1(P → k1...kn, kn+1) = dLips+1 tangent
n ×Wn+1

n ,

dLips+1 tangent
n = dkγd cos θdφ× dLipsn(P → k̄1...k̄n),

{k1, . . . , kn+1} = T
(

kγ , θ, φ, {k̄1, . . . , k̄n}
)

. (1)

1. If dLipsn(P ) was exact, then this formula is exact parametrization of dLipsn+1(P )

2. Practical implementation: Take the configurations from n-body phase space.

3. Turn it back into some coordinate variables.

4. construct new kinematical configuration from all variables.

5. Forget about temporary kγθφ. Only weight Wn+1
n and four vectors count.

6. Several, parallel, T possible and necessary if more sources – collinear singularities.

7. T details depend on matrix element: must tangent at singularities, see next slide.

⋆ For Wn+1
n and for KKMC see the next slide.
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(i) Phase-space 8

Phase Space: (main formula)

If we choose

Gn : M2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k̄1 . . . k̄n (2)

and

Gn+1 : kγ , θ, φ,M
2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k1 . . . kn, kn+1

(3)

then

T = Gn+1(kγ , θ, φ,G
−1
n (k̄1, . . . , k̄n)). (4)

The ratio of the Jacobians form the phase space weight Wn+1
n for the transformation. Such

solution is universal and valid for any choice of G’s. However, Gn+1 and Gn has to match

matrix element, otherwise algorithm will be inefficient (factor 1010 ...).

In case of PHOTOS Gn ’s

Wn+1
n = kγ

1

2(2π)3
×

λ1/2(1,m2
1/M

2
1...n,M

2
2...n/M

2
1...n)

λ1/2(1,m2
1/M

2,M2
2...n/M

2)
, (5)

⋆ In case of KKMC, i.e. masless photons Jacobian Wn+1
n = kγ

1
2(2π)3

is a photon energy.

KKMC: re-scaling photon momentum by η, for Jacobian bring factor η2
.
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(i) Phase-space 9

Phase Space: (multiply iterated)

By iteration, we can generalize formula (1) and add l particles:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (6)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Note that variables kγm , θγm , φγm are used at a time of the m−th step of iteration only,

and are not needed elsewhere in construction of the physical phase space; the same is true

for invariants and angles M2
2...n, θ1, φ1, . . . , θn−1, φn−1 → k̄1 . . . k̄n of eqs. (2,3),

which are also redefined at each step of the iteration. Also intermediate steps require explicit

construction of temporary k̄′
1 . . . k̄

′
n . . . k̄′

n+m ,

We obtain: exact distribution of weighted events over n+ l body phase space.

Bosons statistical factor 1
l! . Photons Wn+i

n+i−1 = ki
1

2(2π)3 . Conformal symmetry.
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(i) Phase-space 10

Phase Space Formula: multichannels.

Often MC algorithm has to be split into branches. In the most general case, when n different

parametrisations of the phase space with different orderings of particles are in use, the cross

section can be written as follows:

dΓX =
∑n

λ=1

∫ 1

0

∏m

i=1 dxi Pλ

[

∑n

δ=1 PδJ
−1
δ (q1(λ, xi), ...qk(λ, xi))

]−1

×|M |2.

In the above formula the four-momenta qi(λ, xi) are calculated from the random numbers

xi according to the parametrization of the phase space of type λ. The Jacobians Jδ have to

be calculated for all parametrisations of the phase space at the point qi; Pλ denotes the

probability of choosing the parametrization of type λ in the generation, λ thus takes
a

a role of

an additional discrete variable in the generation. Numerical values of probabilities Pλ do not

affect the final distributions, but only the efficiency of the generation.

aBut not δ.
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(i) Phase-space 11

Phase Space case of complex singularity structure

• Several Gn+1 can be used simultaneously (branching of the generation algorithm).

• Each Gn+1 can be used to presample distinct singularities chain.

• The price: Wn+1
n become more complicated but remain exact.

• HOWEVER: We have observed that while matching Jacobians for the two branches related

to collinear singularity of photons along direction of l+ and l+ (in Z decay) approximation

must be used if more than one photon is present in final state. Otherwise inconsistencies.

• Non Markovian algorithm, whereas matrix element for multi-photon state may be obtained

by iteration: KKMC EEX variants and Photos. Note KKMC CEEX is more refined.

• AVOID INCONSISTENCY: in expanding manifold curvature: must be the same for phase

space and Matrix Element. Phase space is manifold, Matrix element squared – bi-linear form

on it. Truncation of perturbative expansion or iterative solutions mean truncation in powers of

Ricci tensor, this has to be consistent.

Message for Photos like algorithm, but not for KKMC: neither CEEX nor EEX.
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(i) Phase-space 12

Phase Space: (multiply iterated)

We have generalized formula phase space formula to case of l particles added:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (7)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Now we have to start talking about matrix elements: Our relation between n and n+l body

phase space is motivated by cancellation of infrared singularities. It provides kind of

triangulation. Measure defining distance between points from manifolds of distinct no. of

particles. Such phase space points are close if they differ by presence of soft photons only.

Experimental user attention necessary. Can 1 GeV photon be ignored or only 0.1 MeV one.

We will move now from exact distribution of weighted events over n+ l body

phase space to case where l is generated too. All remain exact!
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Crude distribution on tangent space 13

CrudeDdistribution and crude matrix element

If we add arbitrary factors f(kγi , θγi , φγi) and sum over l we obtain:

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi , θγi , φγi)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n), (8)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).← KLN good start for Photos

• The olive parts of rhs. alone, give crude distribution over tangent space (orthogonal set of

variables ki, θi, φi). We restrict kmin generation (typically 10−6
but not by kmax.
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Crude distribution on tangent space 14

Heuristic CW complexes

We define our crude distribution over yellow space

(surface=1) (represented by sum of: red point, green lines and flat yellow square). Later we

do projections into physics space, using T and matrix elements.

NOTE: in KKMC YFS exclusive exponentiation – conformal symmetry is used instead.
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Crude distribution on tangent space 15

I was talking mostly about solution of Photos Monte Carlo.

Advantage 1: additional particles can be massive suitable for final state radiation.

Advantage 2: leading contributions of higher orders nicely resummed.

Disadvantage 1: not convenient for processes of intermediate narrow resonances,

like in case of e+e− → ll̄nγ around intermediate resonances. When initial state

bremsstrahlung need to be used.

Disadvantage 2: At present work on interferences was not pursued, this is for case

when multiple charged particles are present. Starting from 3 charged final states

this is the case even for complete one loop effects implementation.

But this may be starting point to evaluate path for third order matrix element

implementation into programs like KKMC.
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Crude distribution on tangent space 16

How it is in KKMC?

• Factor F is not obtained from KLN theorem, but calculated from one loop virtual

corrections ( Eikonal level).

• For phase space constraints rescaling is used. No rejection of photon candidates

needed. Except very soft ones, passing under lower generation phase space

boundary. Manageable because factorization works there well.

• Algorithm is useful for initial and final state radiation. Invariant mass of

intermediate state Z/γ∗ can be generated possibly with beam energy spread.

To continue, properties of matrix elements are necessary.

There are several steps. Both for virtual and real emission amplitudes. Usually off

shelf amplitudes and cross sections can not be used.

Let me scratch the topic of YFS exponentiation and its relation to spin amplitudes

calculated using Kleiss-Stirling spinor techniques.

Formal proofs and work on virtual corrections is essential, but does not affect as

much as real emission amplitudes the way how the programs are being developed.
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Matrix elements: parts, eikonal partx 17

Matrix Element (starting point):

• Directly starting from Feynman rules one can calculate spin amplitude for any

QED/QCD process.

• The case of Z → l+l−γ, for Kleiss-Stirling spin amplitudes.

• Single photon amplitude(momentum k1 polarization e1 fermion spinors u(p)

and v(q) dropped):

I = J/

[(

p·e1
p·k1

− q ·e1
q ·k1

)]

−
[

1

2

e/1k/1
p·k1

]

J/+ J/

[

1

2

e/1k/1
q ·k1

]

three gauge invariant parts: appear in other processes too.

Pre-property for factorizations of any sorts, deciphered from Lorentz-group layers.
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Cross section not amplitudes style. 18

• The fully differential distribution from MUSTRAAL (used also in KORALZ for

single photon mode also in TauSpinner) reads:

Xf =
Q′2α(1−∆)

4π2s
s2

{

1
(k′

+k′

−
)

[

dσB

dΩ (s, t, u′) + dσB

dΩ (s, t′, u)

]

}

• Here:

s = 2p+ · p−, s′ = 2q+ · q−,
t = 2p+ · q+, t′ = 2p+ · q−,
u = 2p+ · q−, u′ = 2− · q+,
k′± = q± · k, xk = 2Eγ/

√
s

• The ∆ term is responsible for final state mass dependent terms, p+, p−, q+,

q−, k denote four-momenta of incoming positron, electron beams, outgoing

muons and bremsstrahlung photon.
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Cross section not amplitudes style. 19

• after trivial manipulation it can be written as:

Xf =
Q′2α(1−∆)

4π2s
s2

{

1
(k′

++k′

−
)

1
k′

−

[

dσB
dΩ

(s, t, u′) + dσB
dΩ

(s, t′, u)

]

+ 1
(k′

++k′

−
)

1
k′

+

[

dσB
dΩ

(s, t, u′) + dσB
dΩ

(s, t′, u)

]

}

• In PHOTOS the following expression is used in universal application (AP adj.):

XPHOTOS
f = Q′2α(1−∆)

4π2s
s2

{

1

k′
+ + k′

−

1

k′
−

[

(1 + (1− xk)
2) dσB

dΩ

(

s,
s(1−cos Θ+)

2
,
s(1+cosΘ+)

2

)

]

(1+β cosΘγ)

2

+
1

k′
+ + k′

−

1

k′
+

[

(1 + (1− xk)
2) dσB

dΩ

(

s,
s(1−cos Θ−)

2
,
s(1+cosΘ−)

2

)

]

(1−β cosΘγ)

2

}

where : Θ+ = ∠(p+, q+), Θ− = ∠(p−, q−)

Θγ = ∠(γ, µ−) are defined in (µ+, µ−)-pair rest frame
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Cross section not amplitudes style. 20

The matrix element weight

• weight for exact matrix element is easy to implement WT = Xf/X
PHOTOS
f

• also factor Γtotal/ΓBorn = 1 + 3
4
α
π defines first order weight, it depends on

virtual corrections if non leading mass terms are kept.

• WT =
Xf

XPHOTOS
f

ΓBorn

Γtotal

The differences of Xf and XPHOTOS
f are important

• Without process dependent weight PHOTOS is universal and can be combined

with any generator rather easily, thus 300+ citations. Last year mainly for B

decays and measurements of quark mixing angles.

• Photos weight is then process independent.
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Amplitudes style: higher orders 21

Matrix Element (anything in common?):

• We have seen nice properties of matrix element squared which were factorizing

into Born-like distribution and photon factor.

• It was shown many years ago by Ronald Kleiss that such property of

distributions does not hold beyond first order!

• Dead end? Not really, just complex weightsa

• single photon amplitude again:

I = J/

[(

p·e1
p·k1

− q ·e1
q ·k1

)]

−
[

1

2

e/1k/1
p·k1

]

J/+ J/

[

1

2

e/1k/1
q ·k1

]

three gauge invariant parts, first is eikonal, other for collinear configuration along q and p

We look for these parts in higher order amplitudes

aAlso: samples at different level of sophistication can be correlated up to NLO level. That is enough for

most of experimental techniques, precision of correlated programs can be higher.
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Amplitudes style: higher orders 22

Matrix Element (double emission):

• The structure of exact spin amplitude for single emission looks promising.

• How does it translate to distributions?

• Does it extend to other processes, interactions? Scalar QED QCD as well?

• Does it extent to higher orders?

• Can one decipher anything without enforcing some phase space conditions?

• To identify the building blocks we have used gauge invariance, and

we have used also segments localized at lower order.

• For tree diagrams gauge invariance mean in practice that

replacement k → e set expression to zero

• Virtual corrections add complication because of regularization schemes, we will

skip that now.
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Amplitudes style: higher orders 23

ExactMatrix Element: e+e− → νµν̄µγγ explicitly;

• Expressions are valid for any current J ,

• For complete amplitude add fermionic fields, eg. ū(p) and v(q); 1-st/2-nd photon

momenta/polarizations are: k1/k2 e1/e2.

I
{1,2}
1 =

1

2
J/

(

p·e1
p·k1

−
q ·e1
q ·k1

)(

p·e2
p·k2

−
q ·e2
q ·k2

)

eikonal

I
{1,2}
2l = −

1

4

[(

p·e1
p·k1

−
q ·e1
q ·k1

)

e/2k/2
p·k2

+

(

p·e2
p·k2

−
q ·e2
q ·k2

)

e/1k/1
p·k1

]

J/ β1

I
{1,2}
2r =

1

4
J/

[(

p·e1
p·k1

−
q ·e1
q ·k1

)

k/2e/2
q ·k2

+

(

p·e2
p·k2

−
q ·e2
q ·k2

)

k/1e/1
q ·k1

]

β1

I
{1,2}
3 = −

1

8

(

e/1k/1
p·k1

J/
k/2e/2
q ·k2

+
e/2k/2
p·k2

J/
k/1e/1
q ·k1

)

startforβ2...
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Amplitudes style: higher orders 24

I
{1,2}
4p =

1

8

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2
p·k1

+
e/2k/2e/1k/1
p·k2

)

J/

I
{1,2}
4q =

1

8
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/2e/2k/1e/1
q ·k1

+
k/1e/1k/2e/2
q ·k2

)

I
{1,2}
5pA =

1

2
J/

k1 ·k2
p·k1 + p·k2 − k1 ·k2

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

)(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

)

I
{1,2}
5pB = −

1

2
J/

1

p·k1 + p·k2 − k1 ·k2

(

k1 ·e2k2 ·e1
k1 ·k2

− e1 ·e2

)

I
{1,2}
5qA =

1

2
J/

k1 ·k2
q ·k1 + q ·k2 − k1 ·k2

(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

)(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

)

I
{1,2}
5qB = −

1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k1 ·e2k2 ·e1
k1 ·k2

− e1 ·e2

)

I
{1,2}
6B = −

1

4

k1 ·k2
p·k1 + p·k2 − k1 ·k2

[

+

(

p·e1
p·k1

−
k2 ·e1
k1 ·k2

)

e/2k/2
p·k2

+

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

)

e/1k/1
p·k1

]

J/
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Amplitudes style: higher orders 25

I
{1,2}
7B = −

1

4
J/

k1 ·k2
q ·k1 + q ·k2 − k1 ·k2

[

+

(

q ·e1
q ·k1

−
k2 ·e1
k1 ·k2

)

k/2e/2
q ·k2

+

(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

)

k/1e/1
q ·k1

]

• for the exponentiation we have used separation into 3 parts only. It is crystal

clear, also in case of contributions with t-channel W , was very useful for KKMC,

• for PHOTOS kernel, parts I
{1,2}
3 , I

{1,2}
4p , I

{1,2}
4q were studied separately as

well.

• In fact older works on spin amplitudes were used E. Richter-Was

Z.Phys.C64:227-240,1994, Z.Phys.C61:323-340,1994.

• Clearly visible but not used for PHOTOS further separation of β2 terms ...

• Presented above properties of spin amplitudes were used for PHOTOS design to

make a choice of phase space parametrization and iteration of consecutive

emission kernels that respect numerically as much as possible results of second

order amplitudes. Also one want to remain consistent with NLO and exponentiation

to all orders.
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Possible extension to QCD, also for validation of TauSpinner 26

Matrix Element: qq̄ → Jgg - part proportional to TATB fermion spinors dropped

I
(1,2)
lr =

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)

J/

(

k/2e/2
2q ·k2

+
k1 ·e2
k1 ·k2

−
q ·e2
q ·k2

)

I
(1,2)
ll =

p·k2
p·k1 + p·k2 − k1 ·k2

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)

J/

I(1,2)rr = J/
q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

−
k/1e/1
2q ·k1

)(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

−
k/2e/2
2q ·k2

)

I(1,2)e = J/

(

1−
p·k2

p·k1 + p·k2 − k1 ·k2
−

q ·k1
q ·k1 + q ·k2 − k1 ·k2

)(

k1 ·e2
k1 ·k2

k2 ·e1
k1 ·k2

−
e1 ·e2
k1 ·k2

)

Remainder:

I(1,2)p = −
1

4

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2 − e/2k/2e/1k/1
k1 ·k2

)

J/

I(1,2)q = −
1

4
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/1e/1k/2e/2 − k/2e/2k/1e/1
k1 ·k2

)
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Possible extension to QCD, also for validation of TauSpinner 27

Matrix Element: qq̄ → Jgg - part proportional to TBTA fermion spinors dropped

I
(2,1)
lr =

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)

J/

(

k/1e/1
2q ·k1

+
k2 ·e1
k2 ·k1

−
q ·e1
q ·k1

)

I
(2,1)
ll =

p·k1
p·k2 + p·k1 − k2 ·k1

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)

J/

I(2,1)rr = J/
q ·k2

q ·k2 + q ·k1 − k2 ·k1

(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

−
k/2e/2
2q ·k2

)(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

−
k/1e/1
2q ·k1

)

I(2,1)e = J/

(

1−
p·k1

p·k2 + p·k1 − k2 ·k1
−

q ·k2
q ·k2 + q ·k1 − k2 ·k1

)(

k2 ·e1
k2 ·k1

k1 ·e2
k2 ·k1

−
e2 ·e1
k2 ·k1

)

I(2,1)p = −
1

4

1

p·k2 + p·k1 − k2 ·k1

(

e/2k/2e/1k/1 − e/1k/1e/2k/2
k2 ·k1

)

J/

I(2,1)q = −
1

4
J/

1

q ·k2 + q ·k1 − k2 ·k1

(

k/2e/2k/1e/1 − k/1e/1k/2e/2
k2 ·k1

)
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Possible extension to QCD, also for validation of TauSpinner 28

For QCD we have separation too; 12 gauge invariant parts

• Terms like
(

p·e1
p·k1

− k2 ·e1
k2 ·k1

− e/1k/1
2p·k1

)

A

once integrated over part of phase space give Atarelli-Parisi kernel

• Terms
q ·k1

q ·k1 + q ·k2 − k2 ·k1
B

if combined with phase space Jacobians can be used to redefine fermionic fields

from v(q) to v(q − k2) for example. Term of such type appeared already in scalar

QED (normalization of hadronic current).
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Non trivial details of parametrization used in G and G− 29

1. we are using STANDARD and FORMAL parametrizations of Lorentz group.

One can express it with the help of consecutive boosts and rotations.

2. Convenient for Monte Carlo event construction!

3. For the definition of coordinate system in the P -rest frame the x̂ and ŷ axes of the

laboratory frame boosted to the rest frame of P can be used. The orthogonal

right-handed system can be constructed with their help in a standard way.

4. We choose polar angles θ1 and φ1 defining the orientation of the four momentum k̄2 in

the rest frame of P . In that frame k̄1 and k̄2 are back to back
a
, see fig. (1).

5. The previous two points would complete the definition of the two-body phase space, if

both k̄1 and k̄2 had no measurable spin degrees of freedom visualizing themselves e.g.

through correlations of the secondary decay products’ momenta. Otherwise we need to

know an additional angle φX to complete the set of Euler angles defining the relative

orientation of the axes of the P rest-frame system with the coordinate system used in

the rest-frame of k̄2 (and possibly also of k̄1), see fig. (2).

aIn the case of phase space construction for multi-body decays k̄2 should read as a state representing

the sum of all decay products of P but k̄1.

Z. Was Cracow, January, 2025



Non trivial details of parametrization used in G and G− 30

6. If both rest-frames of k̄1 and k̄2 are of interest, their coordinate systems are oriented

with respect to P with the help of θ1, φ1, φX . We assume that the coordinate systems

of k̄1 and k̄2 are connected by a boost along the k̄2 direction, and in fact share axes:

z′ ↑↓ z′′, x′ ↑↑ x′′
, y′ ↑↓ y′′

.

7. For the three-body phase space: We take the photon energy kγ in P rest frame. We

calculate: photon, k1 and k2 energies, all in k1 + k2 frame.

8. We use the angles θ, φ, in the rest-frame of the k1 + k2 pair: angle θ is an angle

between the photon and k1 direction (i.e. −z′′ ). Angle φ defines the photon azimuthal

angle around z′′, with respect to x′′
axis (of the k2 rest-frame), see fig. (3).

9. If all k1, k2 and k1 + k2 rest-frames exist, then the x-axes for the three frames are

chosen to coincide. It is OK, all frames connected by boosts along z′′ see fig. (3).

10. To define orientation of k2 in P rest-frame coordinate system, and to complete

construction of the whole event, we will re-use Euler angles of k̄2: φX , θ1 and φ1 (see

figs. 4 and 5), defined again of course in the rest frame of P .
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Non trivial details of parametrization used in G and G− 31

k
_

2

k 1

_

θ1

φ1

^

z

y

x

z

x

y

’

’

’

^

ŷ
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Figure 1: The angles θ1, φ1 defined in the rest-frame of P and used in parametrization of

two-body phase-space.
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Non trivial details of parametrization used in G and G− 32
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Figure 2: Angle φX is also defined in the rest-frame of P as an angle between (oriented)

planes spanned on: (i) k̄1 and ẑ-axis of the P rest-frame system, and (ii) k̄1 and x′′
-axis of

the k̄2 rest frame. It completes definition of the phase-space variables if internal orientation

of k̄1 system is of interest. In fact, Euler angle φX is inherited from unspecified in details,

parametrization of phase space used to describe possible future decay of k̄2 (or k̄1).
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Non trivial details of parametrization used in G and G− 33

kk φ

k γ

1 2

θ’
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’
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x

z
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x

Figure 3: The angles θ, φ are used to construct the four-momentum of kγ in the

rest-frame of k1 + k2 pair (itself not yet oriented with respect to P rest-frame). To

calculate energies of k1, k2 and photon, it is enough to know m1, m2, M and

photon energy kγ of the P rest-frame.
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Non trivial details of parametrization used in G and G− 34
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k γ
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Figure 4: Use of angle φx in defining orientation of k1, k2 and photon in the rest-

frame of P . At this step only the plane spanned on P frame axis ẑ and k2 is oriented

with respect to k2 × x′′ plane.
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Non trivial details of parametrization used in G and G− 35
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Figure 5: Final step in event construction. Angles θ1, φ1 are used. The final orien-

tation of k2 coincide with this of k̄2.
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Non trivial details of parametrization used in G and G− 36

Tree of frames used for spin; must be tuned between production and decay

Figure 2
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Factoring genuine weak and strong effects 37

Let us start with the lowest order coupling constants (without EW corrections) of the

Z boson to fermions, sin θ2W = s2W = 1−m2
W /m2

Z (on-shell scheme) and T f
3

denotes third component of the isospin.

The vector ve, vf and axial ae, af couplings for leptons and quarks are defined

with the formulas below:

ve = (2 · T e
3 − 4 · qe · s2W )/∆

vf = (2 · T f
3 − 4 · qf · s2W )/∆ (9)

ae = (2 · T e
3 )/∆

af = (2 · T f
3 )/∆

where

∆ =
√

16 · s2W · (1− s2W ) (10)
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Factoring genuine weak and strong effects 38

With this notation, matrix element for the qq̄ → Z/γ∗ → l+l−, MEBorn, can be

written as:

MEBorn = [ūγµvgµν v̄γ
νu] · (qe · qf ) ·

χγ(s)

s

+ [ūγµvgµν ν̄γ
νu · (ve · vf ) + ūγµvgµν ν̄γ

νγ5u · (ve · af ) (11)

+ ūγµγ5vgµν ν̄γ
νu · (ae · vf ) + ūγµγ5vgµν ν̄γ

νγ5u · (ae · af )] ·
χZ(s)

s

Z-boson and photon propagators read respectively as

χγ(s) = 1 (12)

χZ(s) =
GµṀ

2
z√

2 · 8π · αQED(0)
·∆2 · s

s−M2
Z + i · ΓZ ·MZ

(13)

At the peak of resonance |χZ(s)| × (ve · vf ) > (qe · qf ) and as a consequence,

angular distribution asymmetries of leptons are proportional to

ve = (2 · T e
3 − 4 · qe · s2W ). This gives good sensitivity for s2W measurement.

Above/below resonance – sensitivity to lepton/quark charge or αQED(s ≃ m2
Z).
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Challenge: it is possible to introduce genuine weak with ...39

MIBA =
e2QfQi

s
Vfi(s, t) γµ ⊗ γµ

(14)

+
(gZ

2

)2Zfi(s, t)

d(s)
γµ[vi(s, t)− aiγ5]⊗ γµ[vf (s, t)− aiγ5],

vi(s, t) = T3i − 2Qis
2
WKi(s, t), vf (s, t) = T3f − 2Qfs

2
WKf (s, t), (15)

Vfi(s, t) = Γvp(s)+
(gZ

e

)2

s4WZfi(s, t)
s

d(s)
[Kfi(s, t)−Kf (s, t)Ki(s, t)], (16)

MDM =
e2QfQi

s
Vfi(s, t) γµ ⊗ [Aγµ +

(p+ − p−)
µ

2m
(A− iBγ5)] (17)

+
(gZ

2

)2Zfi(s, t)

d(s)
γµ[vi(s, t)− aiγ5]⊗ [Xγµ +

(p+ − p−)
µ

2m
(X − iY γ5)],

Complete amplitude M = MIBA +MDM
(fermions spinors dropped),

Improved Born Approximation (IBA), Dipole Moment (DM).
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Challenge: it is possible to introduce genuine weak with ...40

OK, this looks simple at Born level.

But to obtain such organization,major LEP time effort was necessary.

It does not need to look nicely and intuitive (form-factors in place of couplings?)

Proofs were needed that it represent field theory results with all analytic properties

as well as anti-analytic ones (dispersion relations Kutkosky rules) intact.

It was shown to be the case at one loop level. First offending terms atO(α2) of no

logarithmic enhancements.

I can not review this domain, even give good references to the effort. Personally I

profited from discussion with Robin Stuart and long work with W. Hollik group and

later D. Bardin group.
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Summary 41

• I have presented essential elements of theoretical background for precision Monte

Carlos. The focus: eikonal QED .

I have not presented actual effort on writing, managing, user servicing of the

programs. Nor the programs or their calculations.

• Massive effort on tests, evaluation what must be included, and what may be left

for future more demanding precision was dropped.

• This work was never single person project : I should mention first of all

Stanislaw Jadach, Bennie Ward but not only. Dimitry Bardin, Bob van Eijk, Y.

Shimizu, Johann Kuhn and their research groups provided important elements.

• Some people impacted indirectly the projects.

Sometimes I have realized importance only much later, nonetheless it is worth mentioning

now. For example, Dr. Zbigniew Klimek pointed to me some mathematical aspects of

Einstein equations solutions: limits of perturbative expansions, due to topological changes.

For many years I thought that of no importance, unless accidentally analogy (forgotten

inspiration?) was pointed to me.

Excellent training on Lorentz group and representation available in early 80’s in Cracow.
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Outlook 42

Main challenges for future:

• improve precision to FCC standards, by about a factor of ten,

• attract new people and assure that they will stay in the domain.

• Preserve expertise and develop new skills.

• Assure coherent development:

− exponentiation require additional effort on fixed oder calculations

− detector granularity (background subtractions) require fine details of phase space

treatment: limitations for cone leptons etc.

− ...

Thank you for listening.
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Some references which came to my mind, when I was preparing slides:

• Z. Was, “Radiative corrections,” CERN-TH-7154-94.

• S. Jadach, B. F. L. Ward and Z. Was, “Coherent exclusive exponentiation for precision

Monte Carlo calculations,” Phys. Rev. D 63, 113009 (2001)

• S. Jadach, B. F. L. Ward and Z. Was, “The Precision Monte Carlo event generator K K for

two fermion final states in e+ e- collisions,” Comput. Phys. Commun. 130, 260-325

(2000)

• S. Banerjee, A. Y. Korchin and Z. Was, “Spin correlations in τ -lepton pair production due

to anomalous magnetic and electric dipole moments,” Phys. Rev. D 106, no.11, 113010

(2022)

• E. Richter-Was and Z. Was, “Adequacy of Effective Born for electroweak effects and

TauSpinner algorithms for high energy physics simulated samples,” Eur. Phys. J. Plus
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