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e In Cracow since more than 40 years now, Monte Carlo programs, phenomenology tools for
accelerator experiments are developed.

® In presentation focus was always on practicalities. Principles foundations were left behind.
For example our LEP time programs, formal documentation was published many years after
use of programs was stopped. Actually, final precision data papers were published later.

e |t is common opinion that Monte Carlo is bound to rely on approximation and remain

inferior to analytic calculations.
e Foundations are rarely underlined and are rarely appreciated even by devoted users.

e Now is a good time to contest — look into principles: new precision challenges of FCC and
challenges of manpower/expertise continuity.

My aim is to argue that Monte Carlo techniques are based on strict mathematical rules.

At least that it can be done like that. My talk is of 30 mins, NOT of 30 hours.



eikonal

e | plan to address several people lifetime effort.
e How this can be of help for future efforts?
e Selected aspects, formal proofs left to long papers.

e Approach backbone eikonal restricted QED . It is (i) solvable,
(if) used in many Monte Carlo designs (iii) SM amplitude level
perturbation results can (and must) be represented as
corrections to their eikonal parts.

e NO eikonal approximation in use.

e My talk is addressed to people who may continue efforts
toward precision horizons as required e.g. by FCC.

e Invitation for further studies, reading....



Tem — ll_fnry, Tauola for 7 lepton decays, photos for

e Our programs, like KKMC for e
bremsstrahlung in decays of any particle or resonance, TauSpinner for weights modifying pp
collision samples, imprinting genuine weak corrections, some spin effects or New Physics,

became essential for LEP and/or LHC phenomenology.

e Purpose of Monte Carlos: generate series of events including detector response models
first. Then compare with results of measurements. Any agreement extend theory applicability,
any discrepancy point to New Physics or to experimental or theoretical ambiguities.

e At present these tools are used e.g. in evaluation of 1/ mass measurement ambiguities,
where tension between Tevatron and LEP/LHC measurements take place. In FCC feasibility
studies, in phenomenology work of Belle Il. For g — 2, ... Previously in precision tests of SM
at LEP, Higgs discovery at LHC... Higgs CP sensitive observables using Machine Learning

versus optimal variables. Ambiguities for physics, ambiguities for Open Al google software.
® Applications outside accelerator physics, e.g. in cosmic rays experiments.

e Tower of theories: eikonal QED,— QED,—> (contact interaction) — EW — SM

e Preceding level has to provide defined parts of the next level amplitudes.

Tension: in lagrangian all fields masless at first.



e Tower of steps for phase space parametrization:
e Riemann cube of manifolds coordinates (random numbers).

® n-body phase space manifolds (phase space slots) of 2,3,4,... states.

Phase-space Jacobians.

e Relating manifolds of distinct multiplicity. CW-complexes; triangulation along lower

dimensionality (induced by infrared singularities) phase-space manifolds.
e Match phase space and matrix elements soft/collinear singularities.

e Multi channel singularity presamples.

e Variable number of particles.

e Tangent space formulation and definition of projections.

*x Beware: match ME singularities with phase space Jacobians minima.
* Start: one dimensional crude distribution with peaks for resonances.

x Fully differential crude distribution.



Z. Was

Phase space first

KKMC follow textbook principle “matrix element X full and exact phase space”

Entry

Phase Space

h.Sp. Low level
Monte Carlo

CEEX:0(a?)
CEEX:0(al)
CEEX:0(a?)

EEX:0O(al)

EEX:0(a?)
EEX:0O(a3)

Model dependent
Matrix element

Exit

Phase-space Monte Carlo simulator is a
module producing “raw events” (includ-
ing importance sampling for possible in-

termediate resonances/singularities).

Library of Matrix Elements; input for “ME

weight”; independent module.

For Matrix Elements approximations OK.

Never for phase space.

Represent  approximations exactly:

only then ME weights are mathematically

sound.

Lots of technicalities collected in Phys.
Rev. D41 (1990) 1425.

Solutions useful for New Physics too!

All our programs follow this paradigm.

Cracow, January, 2025



‘ Lips, 1 — Lips, I

Orthodox Lorentz-invariant phase space (Lips)!

d>k; A’k d’q 4 y
n 2m)* 6 (P — ) ki —
2k9(2m)3 7 2k0(27)3 2(10(27)3( ™ ( 21: q>
43 Bk d3k -
d*pd=( p—q) 2¢0(27)3 2kY (27)3 2k2(27r)3( ) (p 21: )
d>q

= d'pé*(P—p—q)

20 (273 dLips,(p — ki...kn).

Introduce factor equal 1: d*p of four-vector p, times §* (p — >0 kz) and another
factor equal 1, integration variable d M times 5(p2 — Mf)



(1) Phase-space 7

‘ Phase Space Formula of Photos I

ALipsyi1(P — ki...ky, kni1) = dLips Tt tengent syt

dLipst 1@m9¢m — dk._dcos 0dg x dLips,(P — ki...ky),
{k1,. . kny1} = T(ky, 0,0, {k1,... . kn}). (1)

1. It dLips, (P) was exact, then this formula is exact parametrization of d Lipsn1(P)
2. Practical implementation: Take the configurations from n-body phase space.

3. Turn it back into some coordinate variables.

4. construct new kinematical configuration from all variables.

5. Forget about temporary k- 0¢. Only weight W *1 and four vectors count.

6. Several, parallel, T possible and necessary if more sources — collinear singularities.

7. T details depend on matrix element: must tangent at singularities, see next slide.

*x For W1 and for KKMC see the next slide.

Z. Was Cracow, January, 2025



‘ Phase Space: (main formula) I

If we choose

Gn . M22...n7013¢17M32...n7023¢27'"aen—laqbn—l — Elk‘n (2)
and
G"”H—l : k’w07¢7M22...n7917¢17M32...n3927¢27'"aen—laqbn—l — kl"°kn7kn+1
(3)
then

T = Gni1(ky, 0,6, Gy (ka, ... kn)). (4)

The ratio of the Jacobians form the phase space weight W,,TZ’“ for the transformation. Such
solution is universal and valid for any choice of G’s. However, GG,,+1 and (G, has to match
matrix element, otherwise algorithm will be inefficient (factor 10*° ).

In case of PHOTOS G',’s

Wn—l—l — L 1 % >‘1/2(17m?/M12n7M22n/M12n)
n T 2(27)3 AV/2(1,m2 /M2, M2 /M?2)

* In case of KKMC, i.e. masless photons Jacobian W;;H'l =k

1 .
Y 3(2m)3 is a photon energy.

KKMC: re-scaling photon momentum by 77, for Jacobian bring factor 772.



‘ Phase Space: (multiply iterated) I

By iteration, we can generalize formula (1) and add [ particles:

ALipsnst(P — Kr.okns s Fint) = Z,H[dk%dcose o W

=1
X dLips, (P — ki...ky), (6)

{k1, s knar} = T (kv 04y 00 T(o oo Ty Oy Py {1k }) o).

Note that variables k-, , 0+, , ¢~ are used at a time of the m—th step of iteration only,
and are not needed elsewhere in construction of the physical phase space; the same is true
for invariants and angles M3 ,.,01,¢1,...,0nh—1,0n—1 — ki...ky ofegs. (2,3),
which are also redefined at each step of the iteration. Also intermediate steps require explicit

construction of temporary ki ...k, ... Kkl
We obtain: exact distribution of weighted events over n + [ body phase space.

Bosons statistical factor 7. Photons W'} | = kzm Conformal symmetry.



‘ Phase Space Formula: multichannels. I

Often MC algorithm has to be split into branches. In the most general case, when n different
parametrisations of the phase space with different orderings of particles are in use, the cross

section can be written as follows:

1
dlx = S0, [y 17, dz: Py [ZELl PsJs Y g (N, ), -.-qk(k,xi))}
x | M|?.

In the above formula the four-momenta q; (A, x; ) are calculated from the random numbers
x; according to the parametrization of the phase space of type \. The Jacobians Js have to
be calculated for all parametrisations of the phase space at the point g;; PP, denotes the
probability of choosing the parametrization of type \ in the generation, A thus takes® a role of
an additional discrete variable in the generation. Numerical values of probabilities P, do not

affect the final distributions, but only the efficiency of the generation.

aBut not 0.
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‘ Phase Space case of complex singularity structure I

e Several G,, 11 can be used simultaneously (branching of the generation algorithm).
e Each G,,+1 can be used to presample distinct singularities chain.
e The price: Wﬁ“ become more complicated but remain exact.

e HOWEVER: We have observed that while matching Jacobians for the two branches related
to collinear singularity of photons along direction of [T and ™ (in Z decay) approximation

must be used if more than one photon is present in final state. Otherwise inconsistencies.

e Non Markovian algorithm, whereas matrix element for multi-photon state may be obtained
by iteration: KKMC EEX variants and Phot os. Note KKMC CEEX is more refined.

e AVOID INCONSISTENCY: in expanding manifold curvature: must be the same for phase
space and Matrix Element. Phase space is manifold, Matrix element squared — bi-linear form
on it. Truncation of perturbative expansion or iterative solutions mean truncation in powers of

Ricci tensor, this has to be consistent.

Message for Phot os like algorithm, but not for KKMC: neither CEEX nor EEX.

11
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‘ Phase Space: (multiply iterated) I

We have generalized formula phase space formula to case of [ particles added:
l
dLi P — ki .k, k k _ ! dk..d cos 0., do., W
ZpSn_H( —7 K1...Kn, Rp41--.. TL-H) = ﬂH ~; A COS U, ¢7i ndi—1
T i=1
XdLips,(P — ki..ky,), (7)

{k1,- o knai} = T (kv 04y 00 T(o oo Tk, 0ny s Gy k1, 0 }) o).

Now we have to start talking about matrix elements: Our relation between n and n+l body
phase space is motivated by cancellation of infrared singularities. It provides kind of
triangulation. Measure defining distance between points from manifolds of distinct no. of
particles. Such phase space points are close if they differ by presence of soft photons only.

Experimental user attention necessary. Can 1 GeV photon be ignored or only 0.1 MeV one.

We will move now from exact distribution of weighted events over n + [ body
phase space to case where [ is generated too. All remain exact!
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‘ Crude Ddistribution and crude matrix element I

If we add arbitrary factors f (k- , 0., ¢~,) and sum over [ we obtain:

l
1 n—+1
Z exp(—F)ﬂ H [f(k%,ﬁ%, Gry; )iy, d cOs Oy, A, WRIEE | X

dLips, (P — ki..ky,), (8)
{k1, .o knai} = T (kv 04y, 00 T, Tk, Oys s Py (Koo B }) <),

kmaa:
F = / dk~d cos0~deo- f(k~, 0, ¢~). < KLN good start for Photos
k

min

e The olive parts of rhs. alone, give crude distribution over tangent space (orthogonal set of

variables k;, 0;, ¢;). We restrict kumin generation (typically 10~ but not by kmaz.



Crude distribution on tangent space 14

‘ Heuristic CW complexes I
We define our crude distribution over yellow space

(surface=1) (represented by sum of: red point, green lines and flat yellow square). Later we

do projections into physics space, using T and matrix elements.

NOTE: in KKMC YFS exclusive exponentiation — conformal symmetry is used instead.

Z. Was Cracow, January, 2025



15
| was talking mostly about solution of Photos Monte Carlo.
Advantage 1: additional particles can be massive suitable for final state radiation.
Advantage 2: leading contributions of higher orders nicely resummed.

Disadvantage 1: not convenient for processes of intermediate narrow resonances,
like in case of eTe™ — ll_n’y around intermediate resonances. When initial state
bremsstrahlung need to be used.

Disadvantage 2: At present work on interferences was not pursued, this is for case
when multiple charged particles are present. Starting from 3 charged final states

this is the case even for complete one loop effects implementation.

But this may be starting point to evaluate path for third order matrix element

implementation into programs like KKMC.



16

How it is in KKMC?

e Factor F'is not obtained from KLN theorem, but calculated from one loop virtual
corrections ( Eikonal level).

e For phase space constraints rescaling is used. No rejection of photon candidates
needed. Except very soft ones, passing under lower generation phase space
boundary. Manageable because factorization works there well.

e Algorithm is useful for initial and final state radiation. Invariant mass of
intermediate state Z /~* can be generated possibly with beam energy spread.

To continue, properties of matrix elements are necessary.

There are several steps. Both for virtual and real emission amplitudes. Usually off
shelf amplitudes and cross sections can not be used.

Let me scratch the topic of YFS exponentiation and its relation to spin amplitudes
calculated using Kleiss-Stirling spinor techniques.

Formal proofs and work on virtual corrections is essential, but does not affect as
much as real emission amplitudes the way how the programs are being developed.
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‘ Matrix Element (starting point): I

e Directly starting from Feynman rules one can calculate spin amplitude for any
QED/QCD process.

e The case of Z — [T1 ™+, for Kleiss-Stirling spin amplitudes.

e Single photon amplitude(momentum k7 polarization e; fermion spinors u(p)

and v(q) dropped):
=\ G )] e

three gauge invariant parts: appear in other processes too.

Pre-property for factorizations of any sorts, deciphered from Lorentz-group layers.



e The fully differential distribution from MUSTRAAL (used also in KORALZ for
single photon mode also in TauSpinner) reads:

Q/QQ(l N A) 2 1 do do
Xf o 47T28 S (kq_k’_) dQB (s,t,u’) -+ d—QB(S,t/,’U/)

e Here:

s=2py -p-, s =2q4 q-,
t=2py-qy, t'=2py q,
u=2py-q_, u =2_-qy,
Ky =qx -k, zpr=2E,/\/s
e The A term is responsible for final state mass dependent terms, p1, p_, g4,

q—, k denote four-momenta of incoming positron, electron beams, outgoing

muons and bremsstrahlung photon.

18



Cross section not amplitudes style. 19

e after trivial manipulation it can be written as:

_ Qa1 — A)Sz { 1 1 |:daB

Xy

do
= ey | 25 (s, ) + d—§<s,t',u>]

(K, +k) & | dQ

(s,t,u’) + ‘i.{’—;f(s,t’,u)} }

e In PHOTOS the following expression is used in universal application (AP ad;.):

X]{DHOTOS _ Q’ES;M 82{
1 1 [ 2\ do s(l—cos®_) s(l4cosOy) | (148 cos ©~)
kq_ + k/ k/ (1 + (1 - xk) ) dgjlg (S’ 2 + ’ 2 + ) 2 -
1 1 [ o\ do s(1—cos®_) s(l+cos®O_) ] (1—Bcos®~)
+kf|_ + k! ki}- (1 + (1 o xk) ) dfjlg (87 2 ) 2 ) 2 -

Z. Was

where : @+ — 4(p+7q—f-)7 O_ = Z(p—aq—)

©., = Z(~, ") are defined in (u™, ™ )-pair rest frame

Cracow, January, 2025



‘ The matrix element weight I

e weight for exact matrix element is easy to implement W1 = Xf/XJZfHOTOS

e also factor ['*ta! /15O — 1 4 32 defines first order weight, it depends on

virtual corrections if non leading mass terms are kept.

Xf FBorn
o WT = X PHOTOS Tiotal

X ]If HOTOS are important

The differences of X ¢ and

e Without process dependent weight PHOTOS is universal and can be combined
with any generator rather easily, thus 300+ citations. Last year mainly for B

decays and measurements of quark mixing angles.

e Photos weight is then process independent.

20



Amplitudes style: higher orders 21

‘ Matrix Element (anything in common?): I

e \We have seen nice properties of matrix element squared which were factorizing

into Born-like distribution and photon factor.

e |t was shown many years ago by Ronald Kleiss that such property of
distributions does not hold beyond first order!

e Dead end? Not really, just complex weights®

® single photon amplitude again:

|- )] -ae] vk

three gauge invariant parts, first is eikonal, other for collinear configuration along g and p

We look for these parts in higher order amplitudes

2Also: samples at different level of sophistication can be correlated up to NLO level. That is enough for
most of experimental techniques, precision of correlated programs can be higher.



Amplitudes style: higher orders 22

‘ Matrix Element (double emission): I

The structure of exact spin amplitude for single emission looks promising.
How does it translate to distributions?

Does it extend to other processes, interactions? Scalar QED QCD as well?
Does it extent to higher orders?

Can one decipher anything without enforcing some phase space conditions?

To identify the building blocks we have used gauge invariance, and
we have used also segments localized at lower order.

For tree diagrams gauge invariance mean in practice that
replacement k — e set expression to zero

Virtual corrections add complication because of regularization schemes, we will

skip that now.



Amplitudes style: higher orders 23

‘ Exact Matrix Element: eTe™ — v, U,y explicitly; I

e Expressions are valid for any current J,

e For complete amplitude add fermionic fields, eg. @(p) and v(q); 1-st/2-nd photon
momenta/polarizations are: k1 /ks e1/ea.

{1 2} _ p-€e1 q-€1 p-€2 q-€2 :
— — etkonal
J(p’kl q-lm) (p-kQ Q'k2>
1 e e ‘e ‘€
R [ o
4 pkl q/ﬁ pkz pkz qu p/ﬁ
1{1 2y _ 1 J[<p'€1 B CI'€1> }é2¢2 (p-ez B CJ'€2> }é1¢1] 5
4 p-kl Q'kl qu p-kg q-kz q-/ﬁ

13{1’2} — —% <¢1k1 J a2 ¢2k2 J k1¢1> start forfs...

p-kl q- kz p-kg q-/ﬁ



Amplitudes style: higher orders 24

sty _ 1 1 (¢1k1¢2k2 n ¢2k2¢1k1>J
4p 8 p-kl —I—p'kz — k1-ko p-kl p'k'Q
1,2y _ 1 1 fafokidr | Fagifago
I4q - Q J _ +
8" q-k1+ q-ka— k1-ko q-k1 q-ko

72y _ 1 k1-ko p-e1 kerer\ [ pex  ki-e
PA T 27 pki +pko —kika \pki  kooki p-ka  ki-ka

1 1 ki-esks-e
15{;}53}:_—37 ( L e 1—61'62)

2 p-k?l —|—p-k2 — k1-ko kq-ko
2y _ lJ k1-ko (q-e1 B k2°€1> (q-ez B k1°€2>
bgA 2 Q'kl —|—q-l<:2 — k1-ko Q'kl ko - k1 q-kg k1-ko

1 1 ki-exka-e1
1{172} — — .
sab 2 g b gk ke \ ks e

1{1,2}:_1 k1-ko n p-er kz-el ¢2}{72_|_ p-ez ki-ex\¢ifa y
6B 4 p-k1+p-ko— ki-ko p-ki ki-ko ) p-ko p-ky ki-ks)p-ki



Amplitudes style: higher orders 25

712y _ 1 k1-ko g-er  ka-e1 )\ kafo qg-e2 ki-e2\ ki¢a
-t oy sy sy oyl I ooyl ey e By Sl oy St e ) B
q-K1 + q-k2 1-K2 q-k1 1°K2 ) q-K2 q-K2 1'K2 /] q-K1

e for the exponentiation we have used separation into 3 parts only. It is crystal

clear, also in case of contributions with ¢-channel W', was very useful for KKMC,

e for PHOTOS kernel, parts I§1’2}, i;’Z}, iql’2} were studied separately as

well.

e In fact older works on spin amplitudes were used E. Richter-Was
Z.Phys.C64:227-240,1994, Z.Phys.C61:323-340,1994.

e Clearly visible but not used for PHOTOS further separation of 35 terms ...

e Presented above properties of spin amplitudes were used for PHOTOS design to
make a choice of phase space parametrization and iteration of consecutive
emission kernels that respect numerically as much as possible results of second
order amplitudes. Also one want to remain consistent with NLO and exponentiation
to all orders.



Possible extension to QCD, also for validation of TauSpinner 26

‘ Matrix Element: qG@ — J qq - part proportional to TAT? fermion spinors dropped I

1(1,2) _ (p'el B ka2-e1 B ¢1}é1 )J( }é2¢2 4 ki-e2 B C_I'€2>
ir p-kl kz-kl 2p-k1 2q-k2 k?1°k72 q-kg

1(1,2) _ p-k2 (p'el _k2'€1 _ ¢1k1 ) (p-ez _k?1'€2 _ ¢2k2 )J
. p'kl -|—p'k2 — k1-ko p'kl ko- k1 2p-k1 p-kg k1-ko 2p-k72

7(1,2) _ J q-k1 (CI'el _k?2'€1 B f1éa ><Q'€2 _k?1'€2_ ado )
o Q'kl +Q'k2 _kl‘kQ Q‘kl k2'k1 QQ'kl Q’kQ ]ﬁ-kz 2q-k2

7(12) _ J(l— p-ko B q-k1 )(/ﬁ-ez k2'€1_€1'62>
© p-ki+pkas—ki-ka qki+qks—ki-ks ki-ko ki-ka ki-ko
Remainder:

11(31,2) _

1 1 ¢1kid¢ake — ¢2kaé1kn
4 p-k1 +p'k2—/€1'k2( k1-k2 )J

e - 1 1 (k1¢1k2¢2 - %2¢2k1¢1>

4 Q°k71—|—Q°k72—k71-k2 kq-ko



Possible extension to QCD, also for validation of TauSpinner 27

‘ Matrix Element: q@ — Jqq - part proportional to T2 T A fermion spinors dropped I

Il(f’l) — (w _ @ _ ¢2ko )J( F1é1 4 k2-e1 B C_l'61>

p-kg kl-k?Q 2p-k2 2q-k1 k?Q-kl q-kl

1(2,1) _ p-k1 (p-ez _k1'€2 _ ¢2k2 ) (p-el _k?2'€1 _ ¢1k1 )J
" p'kQ +p'k1 _ kQ‘kl p‘kQ kl'kQ 2p-/€2 p-kl kg-lﬁ 2p-l€1

q-ka (q-€2 kirea  fodo ) (q-e1 Ckerer fada )
q-k2 —|—Q']€1 — ko k1 q-k2 k1-ko 2q-k2 Q'kl ko - k1 2q-k1

1(2,1) _ J(l— p-ka . q-ka )(k?2'61 k1'€2_62'€1>
© p-ko+pki—koki qka+qks —kak ko-k1 ko-k1 ko k1
720 _ 1 1 (¢2}é2¢1k1 — ¢1}{71¢2k2>J
P 4p-/€2 —|—p-l€1—/€2-l€1 ko - k1

e - 1 1 <k2¢2%1¢1 - k1¢1%2¢2)

Z Q°k72—|—Q°k71—k72-k1 ko - k1

Y=y




Possible extension to QCD, also for validation of TauSplinner

‘ For QCD we have separation too; 12 gauge invariant parts I

e Terms like
(p'el B ka-eq B ¢1%1) A
p-ki koki  2p-ky

once integrated over part of phase space give Atarelli-Parisi kernel

® Terms
q-k1
q-k1+q-ka — ka-ky
if combined with phase space Jacobians can be used to redefine fermionic fields

B

from v(q) to v(q — ko) for example. Term of such type appeared already in scalar

QED (normalization of hadronic current).

28



Non trivial details of parametrization used in G and GG~ 29

1. we are using STANDARD and FORMAL parametrizations of Lorentz group.
One can express it with the help of consecutive boosts and rotations.

2. Convenient for Monte Carlo event construction!

3. For the definition of coordinate system in the P-rest frame the & and ¢ axes of the
laboratory frame boosted to the rest frame of P can be used. The orthogonal
right-handed system can be constructed with their help in a standard way.

4. We choose polar angles 61 and ¢ defining the orientation of the four momentum &z in
the rest frame of P. In that frame k1 and k2 are back to back?, see fig. (1).

5. The previous two points would complete the definition of the two-body phase space, if
both k1 and k2 had no measurable spin degrees of freedom visualizing themselves e.g.
through correlations of the secondary decay products’ momenta. Otherwise we need to
know an additional angle ¢ x to complete the set of Euler angles defining the relative
orientation of the axes of the P rest-frame system with the coordinate system used in
the rest-frame of ko (and possibly also of l_cl), see fig. (2).

2n the case of phase space construction for multi-body decays 7{2 should read as a state representing
the sum of all decay products of P but El.



10.

Non trivial details of parametrization used in G and GG~

If both rest-frames of k1 and k2 are of interest, their coordinate systems are oriented
with respect to P with the help of 61, ¢1, ¢ x. We assume that the coordinate systems

of k1 and ks are connected by a boost along the ko direction, and in fact share axes:
Z/ T\L ZN, :U/ /I\T :U//, y/ T\L y//.
For the three-body phase space: We take the photon energy k~ in P rest frame. We

calculate: photon, k1 and k2 energies, all in k1 + ko frame.

We use the angles 6, ¢, in the rest-frame of the k1 + k2 pair: angle 6 is an angle
between the photon and k1 direction (i.e. —z'" ). Angle ¢ defines the photon azimuthal

angle around 2"/, with respect to '’ axis (of the ko rest-frame), see fig. (3).

If all k1, ko and k1 + ko rest-frames exist, then the x-axes for the three frames are

chosen to coincide. It is OK, all frames connected by boosts along 2z’ see fig. (3).

To define orientation of k2 in P rest-frame coordinate system, and to complete
construction of the whole event, we will re-use Euler angles of ko: ¢x, 01 and ¢1 (see

figs. 4 and 5), defined again of course in the rest frame of P.

30



Non trivial details of parametrization used in G and G~

<>

x>

Figure 1: The angles 61, ¢1 defined in the rest-frame of P and used in parametrization of

two-body phase-space.
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Non trivial details of parametrization used in G and G~ 32

|
x
N
\\\/XA/
S
X

x>

Figure 2: Angle ¢ x is also defined in the rest-frame of PP as an angle between (oriented)
planes spanned on: (i) k1 and 3-axis of the P rest-frame system, and (ii) k1 and z’-axis of
the ko rest frame. It completes definition of the phase-space variables if internal orientation
of k1 system is of interest. In fact, Euler angle ¢ x is inherited from unspecified in details,

parametrization of phase space used to describe possible future decay of ko (or El).



Non trivial details of parametrization used in G and G~

kV y

Figure 3: The angles 0, ¢ are used to construct the four-momentum of k., in the
rest-frame of k1 + ko pair (itself not yet oriented with respect to P rest-frame). To
calculate energies of k1, ko and photon, it is enough to know my, mo, M and

photon energy k., of the P rest-frame.
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Non trivial details of parametrization used in G and G~

Figure 4: Use of angle ¢, in defining orientation of k1, ko and photon in the rest-
frame of P. At this step only the plane spanned on P frame axis Z and ks is oriented

with respect to ko X z'’ plane.

34



Non trivial details of parametrization used in G and G~ 35

Figure 5: Final step in event construction. Angles 61, ¢ are used. The final orien-

tation of ks coincide with this of ks.



Non trivial details of parametrization used in G and GG~
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Tree of frames used for spin; must be tuned between production and decay
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Factoring genuine weak and strong effects 37

Let us start with the lowest order coupling constants (without EW corrections) of the
Z boson to fermions, sin (9‘2,‘/ = S%V =1-— m%v/m% (on-shell scheme) and T3f

denotes third component of the isospin.

The vector v, vy and axial a., a ¢ couplings for leptons and quarks are defined

with the formulas below:
Ve = (
vp  =(2:
( .
CLf — (

where

A:\/16-s%4/-(1—s%v) (10)
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Factoring genuine weak and strong effects 38

With this notation, matrix element for the q¢ — Z/v* — IT1~, M Egon, can be

written as:
. Ny X~(5)
MEBorn — [’LL”}/'M’UQMV'U”Y ’LL] ) (Q€ . Qf) . 78
+  [tv*vgu iy u - (ve - vf) + WY g 0y Y u - (ve - ay) (11)
S
+ ﬂ’y“v%gwﬂvyu (ae - vf) + ﬂ’y“v%gwﬂv’/f’u (ae - ay)] - XZS( )

Z-boson and photon propagators read respectively as
x~(s) =1 (12)

G,LLMzQ A2 s
\/5‘87T°OzQED(O) S_M%‘Fi'FZ'MZ

Xz(s) = (13)
At the peak of resonance |xz(s)| X (ve - vf) > (ge - ¢f) and as a consequence,
angular distribution asymmetries of leptons are proportional to

Ve =(2-TS —4-q, - SW) This gives good sensitivity for SW measurement.
Above/below resonance — sensitivity to lepton/quark charge or agrp (s =~ m%).



Challenge: it is possible to introduce genuine weak with ...39

2 .
M= S QSsz Vii(s,t) v ® 7" (14)

+(92Z)2 ch;((::)) : Yulvi(s, t) = aivs] @ y"[vy (s, 1) — ais],

vi(s,t) = Ta; — 2Qisw Ki(s,t),  vs(s,t) =Tss —2Q sty Ks(s,t), (15)

Vii(s,t) = rvp(s)+(%Z)Qsévzﬁ(s,t)%[Kfi(s,t)—Kf(s,t)Ki(s,t)], (16)

2 _ _

MM = Ry oy o [y + PPN 4 iy )
ZZ i : — % '

(%) 25D (e t) — sl 0 Xy + B (0 i),

Complete amplitude M = MIBA + MPM (fermions spinors dropped),
Improved Born Approximation (IBA), Dipole Moment (DM).
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Challenge: it is possible to introduce genuine weak with ...40

OK, this looks simple at Born level.
But to obtain such organization,major LEP time effort was necessary.
It does not need to look nicely and intuitive (form-factors in place of couplings?)

Proofs were needed that it represent field theory results with all analytic properties

as well as anti-analytic ones (dispersion relations Kutkosky rules) intact.

It was shown to be the case at one loop level. First offending terms at O(a?) of no

logarithmic enhancements.

| can not review this domain, even give good references to the effort. Personally |
profited from discussion with Robin Stuart and long work with W. Hollik group and

later D. Bardin group.



Summary

e | have presented essential elements of theoretical background for precision Monte
Carlos. The focus: eikonal QED .

| have not presented actual effort on writing, managing, user servicing of the
programs. Nor the programs or their calculations.

e Massive effort on tests, evaluation what must be included, and what may be left
for future more demanding precision was dropped.

e This work was never single person project : | should mention first of all
Stanislaw Jadach, Bennie Ward but not only. Dimitry Bardin, Bob van Eijk, Y.
Shimizu, Johann Kuhn and their research groups provided important elements.

® Some people impacted indirectly the projects.

Sometimes | have realized importance only much later, nonetheless it is worth mentioning
now. For example, Dr. Zbigniew Klimek pointed to me some mathematical aspects of
Einstein equations solutions: limits of perturbative expansions, due to topological changes.
For many years | thought that of no importance, unless accidentally analogy (forgotten

inspiration?) was pointed to me.

Excellent training on Lorentz group and representation available in early 80’s in Cracow.
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Outlook

Main challenges for future:
e improve precision to FCC standards, by about a factor of ten,
e attract new people and assure that they will stay in the domain.

e Preserve expertise and develop new skKills.
e Assure coherent development:
— exponentiation require additional effort on fixed oder calculations

— detector granularity (background subtractions) require fine details of phase space

treatment: limitations for cone leptons etc.

Thank you for listening.
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Some references which came to my mind, when | was preparing slides:
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S. Jadach, B. F. L. Ward and Z. Was, “Coherent exclusive exponentiation for precision
Monte Carlo calculations,” Phys. Rev. D 63, 113009 (2001)

S. Jadach, B. F. L. Ward and Z. Was, “The Precision Monte Carlo event generator K K for
two fermion final states in e+ e- collisions,” Comput. Phys. Commun. 130, 260-325
(2000)

S. Banerjee, A. Y. Korchin and Z. Was, “Spin correlations in 7-lepton pair production due
to anomalous magnetic and electric dipole moments,” Phys. Rev. D 106, no.11, 113010
(2022)
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