Recent Electroweak Measurements with ATLAS

XXXI Cracow Epiphany Conference on the recent LHC Results 13-17 January 2025

Brigitte Vachon McGill University

On behalf of the ATLAS Collaboration

The Electroweak Theory

 Rich phenomenology arises from the non-Abelian gauge group structure and spontaneous EW symmetry breaking in the Standard Model

 $SU(2)_{I} \times U(1)_{V}$ -

from: g, g', v, λ

• Or alternatively can use as input parameters, e.g., $\alpha_{
m OED}, G_F, m_Z, m_H$

LHC offers unique environment to test EW theory!

$$\longrightarrow W^+, W^-, Z^0, \gamma$$

Mass of electroweak gauge bosons and interactions strength predicted precisely

$$\rho = \frac{m_W^2}{m_Z^2 cos^2 \theta_W}$$

Electroweak Tests at LHC

Precision Frontier

Radiation corrections modify propagators and decay vertices

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

Sensitivity to a wide range of physics through quantum loops

Measurements of SM parameters

- Delicate gauge cancellations at high energy
- Enhanced sensitivity to non-SM contributions

Investigation of EW gauge structure

Measurements of SM parameters

W Boson Mass and Width

Eur. Phys. J. C 84 (2024) 1309, arXiv:2403.15085

- Re-analysis of 2011 data
 - Favourable experimental environment for m_W measurement
 - Consolidate earlier ATLAS results, in the context of CDF latest measurement.
- Fit p_T^{ℓ} and m_T^W distributions in $W \to \ell \nu$ decays
 - Improved statistic based on the profile likelihood
 - Updated to more modern PDF sets
- Measurement requires excellent precision in lepton energy/momentum calibration ($O(10^{-4})$) and recoil response (~ few %).

Parameters of the SM

- Total uncertainty reduced by ~ 15%
- measurements.

First measurement at LHC • Most precise single-experiment

Simultaneous extraction of m_W and Γ_W

Correlation of -30%

Parameters of the SM

Exclusive W Boson hadronic decays

Phys. Rev. Lett. 133 (2024) 161804, arXiv:2309.15887

- Test bench for the QCD factorization framework
- Could enable W boson mass measurement with a fully reconstructed final state at future colliders
- Analysis enabled by special photon + track trigger

	95% CL upper limits		
Branching fraction	Expected $\times 10^{-6}$	Observed $\times 1$	10^{-6}
$\mathcal{B}(W^{\pm} \to \pi^{\pm} \gamma)$	$1.2^{+0.5}_{-0.3}$	1.9	x4
$\mathcal{B}(W^{\pm} \to K^{\pm} \gamma)$	$1.1_{-0.3}^{+0.4}$	1.7	
$\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$	$6.0^{+2.3}_{-1.7}$	5.2	Fir

W+jets Production arXiv:2412.11644

- variety of observables
- Explore the modelling of kinematic variables in the high momentum phase space

• Inclusive and differential cross-section measurements in the collinear phase space as a function of a

W and Z Boson Production

- First step in the study of gauge bosons at **13.6TeV**
 - Total/fiducial/differential cross-section measurements

PLB 854 (2024) 138725, arXiv:2403.12902

- Uncertainty ~ 2-3% dominated by luminosity uncertainty
- Ratio measurements for increased sensitivity to PDF
- Good agreement with NNLO+NNLL QCD and NLO EW predictions

 $pp \rightarrow ZZ$

PLB 855 (2024) 138764, arXiv:2311.09715

- Uncertainty ~ 6% (with comparable stat./syst. uncertainties)
- Good agreement with NNLO QCD + NLO EW predictions

Z Boson Invisible Width Phys. Lett. B 854 (2024) 138705, arXiv:2312.02789

- Measurements via different final states and analysis strategies test the consistency of SM

• Sensitive to number of light neutrinos coupling to Z boson and potential non-SM contributions

Z Boson Invisible Width

Phys. Lett. B 854 (2024) 138705, arXiv:2312.02789

$\Gamma(Z \rightarrow inv) = 506 \pm 2(stat) \pm 12(stat)$

- Single most precise recoil-based measurement (~ 2.5%)
- Dominated by systematic uncertainties (leptons)
- Result in agreement with LEP combination and SM predictions

Recoil-based

Parameters of the SM

Investigation of EW Gauge Structure

WZ Polarization Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- breaking mechanism.
 - Longitudinal polarisation generated by Goldstone bosons in EWSB
 - Unitarity of $V_L V_L$ scattering cross-section at high energies guaranteed by gauge symmetry.
- Experiments gaining sensitivity to $V_L V_L$ production and starting to study energy dependence of cross-section.

• Study of diboson polarization probes gauge symmetry structure and electroweak symmetry

WZ Polarization Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- The $W_L Z_L$ final state only makes up ~ 6% of total WZ cross-section.
- Measure polarization fractions in longitudinallyenriched regions.
 - $p_T^{WZ} < 70 \text{ GeV} \rightarrow \text{Reduce jet activity}$
 - High $p_T^Z \rightarrow$ Enhance s-channel contributions
- Measurements compatible with SM predictions.

	Measurement]
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 20$
f_{00}	$\begin{array}{c} 0.17 \pm^{0.02}_{0.02} (\text{stat}) \pm^{0.01}_{0.02} (\text{syst}) \\ 0.83 \pm^{0.02}_{0.02} (\text{stat}) \pm^{0.02}_{0.01} (\text{syst}) \\ 7.7 \ (6.9) \ \sigma \end{array}$	$0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$	$\parallel f_{00}$	0.152 ± 0.0
f_{XX}	$0.83 \pm _{0.02}^{0.02} (\text{stat}) \pm _{0.01}^{0.02} (\text{syst})$	$0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$	$\int f_{0T}$	0.120 ± 0.0
f_{00} obs (exp) sig.	7.7 (6.9) σ	3.2 (4.2) <i>σ</i>	$\int f_{T0}$	0.109 ± 0.0
			$\ f_{TT}$	0.619 ± 0.0

14

WZ Radiation-Amplitude-Zero (RAZ) Phys. Rev. Lett. 133 (2024) 101802, arXiv:2402.16365

- At LO, scattering amplitudes predicted to be zero for specific W scattering angle in the WZ rest frame
- Variables sensitive to RAZ effect: $\Delta Y(WZ), \Delta Y(\ell_W Z)$
- RAZ arises primarily from $W_T Z_T$ amplitude
 - Subtract measured $W_L Z_L$ fractions and background
- Unfolded distributions compatible with SM prediction

Quartic Electroweak Couplings

- Some of the rarest processes experimentally accessible at LHC
 - Vector-boson scattering observed in most channels
 - Increasing sensitivity to triboson production

16

Diboson: Wyjj Eur. Phys. J. C 84 (2024) 1064, arXiv:2403.02809

- Observation of EW $W\gamma jj$ with > 6σ established using ML techniques
- Study modelling of several key kinematic observables.

Diboson: WZjj JHEP 06 (2024) 192, arXiv:2403.15296

- Multivariate discriminant used to separate EW and strong production modes
- First study of modelling of several key kinematic observables

Triboson

Observation with 5.6σ significance

ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $W(\rightarrow l\nu)\gamma\gamma$ Data 2015-2018 🚺 (stat) 🚺 (total) $13.8 \pm 1.1 \text{ (stat)}^{+2.1}_{-2.0} \text{ (syst)} \pm 0.1 \text{ (lumi) fb}$ Sherpa 2.2.10 NLO $13.6^{+2.4}_{-1.6}$ (scale) $^{+0.5}_{-0.4}$ (stat+PDF+ α_s) fb MadGraph5_aMC@NLO 14.8 $^{+1.1}_{-1.1}$ (scale) $^{+0.4}_{-0.4}$ (stat+PDF+ α_s) fb 12 14 16 10 $\sigma_{W\gamma\gamma}^{fid} \times Br(W \rightarrow e/\mu \nu)$ [fb] BDT discriminants trained in each event category to enhance the separation between signal and background

Anomalous Quartic Gauge Couplings

• Deviations from the SM are quantified in an Effective Field Theory approach

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}}$

- Considering only operators affecting QGC at dimension-8
- Limits on Wilson coefficients reported without and with unitarity preservation using clipping technique.

	W	<i>Yjj</i>		
Eur. Phys. J. C				-
$\frac{\text{Coefficients [TeV^{-4}]}}{f_{T0}/\Lambda^4}$	$\frac{\text{Observable}}{p_{\text{T}}^{jj}}$	Expected [TeV ⁻⁴] [-2.4, 2.4]	Observed [TeV ⁻⁴] [-1.8, 1.8]	-
f_{T1}/Λ^4	p_{T}^{jj}	[-1.5, 1.6]	[-1.1, 1.2]	
f_{T2}/Λ^4	p_{T}^{jj}	[-4.4, 4.7]	[-3.1, 3.5]	First LHC
f_{T3}/Λ^4	$p_{T_{ii}}^{JJ}$	[-3.3, 3.5]	[-2.4, 2.6]	
f_{T4}/Λ^4 f_{T5}/Λ^4	$p_{\rm T}^{JJ}$	[-3.0, 3.0] [-1.7, 1.7]	[-2.2, 2.2] [-1.2, 1.3]	constraints
f_{T6}/Λ^4	$p_{\mathrm{T}}^{jj} \ p_{\mathrm{T}}^{jj}$	[-1.7, 1.7] [-1.5, 1.5]	[-1.2, 1.3] [-1.0, 1.1]	
f_{T7}/Λ^4	p_{T}^{jj}	[-3.8, 3.9]	[-2.7, 2.8]	
f_{M0}/Λ^4	p_{T}^{l}	[-28, 28]	[-24, 24]	-
f_{M1}/Λ^4	p_{T}^{l}	[-43, 44]	[-37, 38]	
f_{M2}/Λ^4	$p_{\mathcal{T}}^{\prime}$	[-10, 10]	[-8.6, 8.5]	
f_{M3}/Λ^4	$p_{\mathcal{T}}^{\prime}$	[-16, 16]	[-13, 14]	
f_{M4}/Λ^4	$p_{\mathcal{T}}^{\prime}$	[-18, 18]	[-15, 15]	
f_{M5}/Λ^4	$p_{\mathcal{T}}^{\iota}$	[-17, 14]	[-14, 12]	
f_{M7}/Λ^4	p_{T}^{\prime}	[-78, 77]	[-66, 65]	-

$$+\sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} O_{i}^{(8)} + \dots$$

Summary

- The LHC and ATLAS are providing a wealth of valuable insights into the electroweak sector.
- ATLAS has made significant strides in precision measurements, studies of the electroweak gauge structure, and exploring rare processes.
- With growing datasets and more refined techniques, the opportunities for discovery are as good as ever.
- New physics might just be around the corner, and the search continues.

All ATLAS results available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic

