

Higgs boson properties and rare decays in CMS

<u>Michał Bluj</u> National Centre for Nuclear Research on behalf of the CMS Collaboration

XXXI Cracow EPIPHANY Conference 13-17 January 2025

Higgs boson properties and rare decays in CMS

<u>Michał Bluj</u> National Centre for Nuclear Research on behalf of the CMS Collaboration

XXXI Cracow EPIPHANY Conference 13-17 January 2025

Introduction & overview

BEH mechanism(*) one of key features of the Standard Model:

a scalar field, with a non-zero vacuum expectation, responsible for the masses of particles

- necessary for both gauge boson and fermion masses
- \circ predicts relation between gauge boson masses and couplings
 - preserves unitary of VV $_{\rightarrow}$ VV scattering (through cancellation of diagrams with exchange of V $_{\rm L}$ and H)
 - essential for renormalisability of the SM
- predicts existence of (at least one) Higgs boson
- Discovery of the boson confirmed the mechanism and gives insights to its details
- Higgs boson is special
 - The only (fundamental) scalar particle in SM (a dynamic explanation of BEH mechanism à la BCS theory will be a breakthrough)
 - Neither matter nor force carrier
 - Couples proportionally to mass

(*) Brout-Englert-Higgs(-Hagen-Guralnik-Kibble) – BEH(HGK) – mechanism XXXI Epiphany, 13. I. 2025

Appetiser: H mass peaks

Only the $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell=e,\mu$) peak visible for "naked eye" w/o bkg. subtraction Typically S/B << 1 => precise bkg. estimation crucial for Higgs measuremts • incl. MC generators (DY, Wjets, tt, ...)

Higgs measurements

- Many measurements enabled with large data-sets already collected
 - Precision measurements: mass & width, cross-section & couplings (incl. 3rd generation fermions),

• Rare processes:

coupling to 2^{nd} generation: $H \rightarrow \mu\mu$, $H \rightarrow cc$, self coupling (HH), $H->Z\gamma/\gamma\gamma^*$ (BSM in loops), "Invisible" decays rare production processes

• **BSM searches:** additional Higgs bosons,

exotic decays, anomalous couplings

Collected pp data:

- Run-1 at 7&8TeV (2010–12) : ~5+20/fb
- Run-2 at 13 TeV (2015–18): ~140/fb
- Run-3 at 13.6 TeV (2022,23,24...):
- ~40+30+110/fb

(early measurements)

=> No. of Higgs bosons at CMS O(10⁸)

Higgs measurements

- Many measurements enabled with large data-sets already collected
 - Precision measurements:

mass & width, cross-section & couplings (incl. 3rd generation fermions),

• Rare processes:

coupling to 2^{nd} generation: $H \rightarrow \mu\mu$, $H \rightarrow cc$, self coupling (HH), $H->Z\gamma/\gamma\gamma^*$ (BSM in loops), "Invisible" decays rare production processes

 BSM searches: additional Higgs bosons, exotic decays, anomalous couplings

Great results thanks to collective efforts!

- excellent performance of the LHC machine
- extensive understanding of the performance of the CMS experiment
- precision theoretical description of the Higgs boson as well as the backgrounds.
- application of sophisticated analysis techniques incl. machine learning

This talk: selection from a plethora of very interesting analyses preformed since Higgs boson discovery.

Mass measurement

m_{H}^{R} is a free parameter of the Standard Model m_{H} measured with fully reconstructed high-resolution final states: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell=e,\mu$)

Mass measurement requires excellent calibration of photon energies $(H \rightarrow \gamma \gamma)...$

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26

Calibrate reconstructed energy of photons with MC, MC/data with $Z \rightarrow ee$ events with account for differences between e and y

and lepton momenta (H \rightarrow ZZ* \rightarrow 4l)

- recover final state radiation photons
- fit lepton momenta with Z_1 mass constraint (usually on-shell Z boson) for each event
- compute $m_{_{41}}$ with uncertainty at event basis (with refitted lepton momenta)
- Measured with likelihood fit dependent on signal-strength parameter and m_{μ}

floating in the fit (+nuisance parameters for systematic uncertenties)

- di-photon mass in $H \rightarrow \gamma \gamma$ channel
- 3D fit in $H \rightarrow ZZ \rightarrow 4I$ with m_{4I} , its resolution and kinematic bkg/sig discriminant XXXI Epiphany, 13. I. 2025

m_H: recent combined results

Combining $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ with Run 1 (5.1+19.7/fb) + 2016 data (36/fb)

Phys. Lett. B 805 (2020) 135425 JHEP 11 (2017) 047

Result: $m_{H} = 125.38 \pm 0.11$ (stat.) ± 0.09 (sys.) GeV

=> Precision of 140 MeV (0.11%)

=> Statistical uncertainty bigger than systematic

$m_{_{H}}$: $H \rightarrow 4\ell$ w/ full Run-2 data

$H \rightarrow ZZ^* \rightarrow 4\ell$ with Run 1 (5.1+19.7/fb) + Run-2 data (138/fb)

CMS-HIG-21-019

Result: $m_{H} = 125.08 \pm 0.10$ (stat.) ± 0.05 (sys.) GeV

=> Precision of 120 MeV (0.09%)

=> Statistical uncertainty dominates

Measurement with $H \rightarrow \gamma\gamma$ using full Run-2 data (and combinaton) ongoing XXXI Epiphany, 13. I. 2025

Total width mesurement

- When m_{μ} is known Γ_{μ} is predicted within **Standard Model** \circ $\Gamma_{\rm H}$ = 4.1 MeV for $m_{\rm H}$ = 125 GeV Deviations from this prediction would mean **BSM** physics Γ_{H inv./undet.} < ~10% at 95 CL 0.6 On-shell $\Gamma_{\rm H}$ fit The extraction of H couplings requires making 0 0.5 assumption on Γ_{μ} 0.4 CL \circ e.g. no BSM decays, and Γ_{μ} computed as a function of all coupling modifiers (κ) 0.3 or, invisible or undetected decays allowed, but Ο $H \rightarrow ZZ \rightarrow 4\ell$ (Run-2): ^{0.2} ⊢ Γ_H < 330 (60) MeV at 95% (68%) C $K_{W,Z} \leq 1$ CMS-HIG-21-019 Expected Γ_{μ} is much smaller than detector 0 0.1 resolution of O(1 GeV) (O(1%)) 0.3 0.2 Width measurement possible at LHC?
 - Scanning of $\sigma(\mu\mu \rightarrow H)$ in function \sqrt{s} with muon collider considered as best method Ο
 - Similarly one can consider $\sigma(ee \rightarrow H)$ with e+e- collider, but eeH coupling very small Ο

68% C

95% Cl

0.7

08

0.5

0.6

0.4

 $\Gamma_{\rm H}$ (GeV)

Γ_{H} measurement: principles

◎ Off-shell $H^* \rightarrow VV$ (V=W,Z)

- $_{\odot}$ Competing effects from BW (resonant shape) and $\Gamma_{H_{}\rightarrow VV}$
- \circ ~10% of gg \rightarrow H \rightarrow ZZ cross section for $m_{zz}{>}2m_z$
- This feature can be used to measure of the total Higgs width

=> combined on-shell and off-shell measurements allow to constrain width

 \odot Significant (destructive) interference with $gg \rightarrow VV$ continuum should be accounted for

Higgs total width: results CMS-HIG-21-019

 Γ_{H} = 3.0^{+2.0} MeV (in agreement with the SM expectation of 4.1 MeV) Lack of off-shell production excluded at 3.8 standard deviations

Perspectives on $\Gamma_{\rm H}$ measurement

- $_{\odot}~$ Off-shell production with ZZ decays provide a way to measure $\Gamma_{_{H}}$ at LHC!
 - involves a few (weak) assumptions
- Precision is still small (~50-70%)
 - still plenty room for new physics
- Systematic uncertainties can still improve, e.g. on ZZ background
- Statistical uncertainties on off-shell yields are still large
 - these will improve for sure

Nature 607 (2022), 60

Production and decays

 \odot Production and decay signal strengths (µ) obtained by combination of individual measurements

Nature 607 (2022), 60

Production and decays

- Production and decay signal strengths (μ) obtained by combination of individual measurements
 - => 5 main production and 5 main decay channels observed (>5 σ)
 - => great agreement with SM

10-20% precision on other main production processes

$H \to \mu \mu \ decay$

JHEP 01 (2021) 148

Experimentally easiest access to a coupling to 2^{nd} generation

Search for narrow peak on falling background Excellent muon resolution, but

- low Br~2.2.10⁻⁴
- high bkg. from no-resonant µµ production (Drell-Yan)

Categories based on production processes and dedicated ML discriminants to increase sensitivity

• Independent on $m(\mu\mu)$

Results:

- $\mu = 1.19 \pm 0.41$ (stat.) ± 0.17 (sys.)
- Significance 3.0σ (exp. 2.5σ) => Evidence

$H \rightarrow Z\gamma_z$ decay

Rare $H \rightarrow Z\gamma$ via loops:

- Br ~1.5·10⁻³
 - further lowered by requirement of $\mathsf{Z} \to \ell \ell$
- Sensitive to BSM contributions

Search for narrow peak in m(lly) on falling background

- Excellent resolution
- High bkg. Drell-Yan + ISR/jet

Categories based on production processes and dedicated ML discriminants to increase sensitivity

Combined ATLAS & CMS searches

Results:

- µ = 2.2± 0.6 (stat.) ± 0.3 (sys.)
- Significance 3.4 σ (exp. 1.6 σ) => Evidence
- Agrees with SM within 1.9σ

Couplings

Couplings follow expectation of the BEH mechanism

=> agreement with SM over 3 orders of magnitude

=> κ_v with ~5% precision

- => Observation of couplings with 3rd generation
- => Evidence (> 3σ) of coupling with muons

Couplings

Couplings follow expectation of the BEH mechanism

=> agreement with SM over 3 orders of magnitude

=> κ_v with ~5% precision

- => Observation of couplings with 3rd generation
- => Evidence (> 3σ) of coupling with muons

What about coupling to charm?

PRL 131 (2023) 061801

$H \rightarrow cc decay$

Golden channel to probe Higgs-charm coupling (Br~2.8%)

Use VH production to cope with overwhelming bkg.

Learn from history of VH(bb) measurements: => Tag leptonically decaying W/Z (with high- p_T) => Combine "resolved" and "merged" topologies => Exploit Z \rightarrow cc "standard candle" Novel GraphNN (ParticleNet) for c-tagging (both topologies) and mass of merged jet

CMS-PAS-HIG-23-010

H+c production

Signal "sensitive" cross section ~90 fb Difficult bkg: ggH and "insensitive" H+c production

Probe of y_c via Higgs kinematics

Higgs production sensitive to $y_c (p_T, |y|, n_{jets})$

=> able to separate b/c contributions

Precise ggH differential cross sections from combinations of $H \rightarrow \gamma\gamma$, $H \rightarrow 4\ell$, $H \rightarrow \tau\tau$, $H \rightarrow 2\ell 2\nu$ measurements Extrapolated to full phase-space

Probe of y_c via Higgs kinematics

Higgs production sensitive to $y_c (p_T, |y|, n_{jets})$ => able to separate b/c contributions

Precise ggH differential cross sections from combinations of $H \rightarrow \gamma\gamma$, $H \rightarrow 4\ell$, $H \rightarrow \tau\tau$, $H \rightarrow 2\ell 2\nu$ measurements Extrapolated to full phase-space

Higgs self-coupling

V (ø)

25

Determining the Higgs potential, are H self-couplings as predicted by SM?

• Higgs boson self-couplings defined by $m_{_{\rm H}}$ in SM

$$V(\Phi) = -\mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2}$$

$$\Phi \rightarrow v + H$$

$$V = V_{0} + \left(\frac{1}{2}m_{H}^{2}H^{2}\right) + \left(\lambda v H^{3} + \frac{1}{4}\lambda H^{4}\right)$$
Mass term
Self- and quadratic couplings
Proportional to m_{H} in SM
$$\frac{H}{v} = - - \left(\frac{3m_{H}^{2}}{v} + \frac{3m_{H}^{2}}{v^{2}}\right)$$
XXXI Epiphany, 13. I. 2025

Higgs self-coupling

Determining the Higgs potential, are H self-couplings as predicted by SM?

- Higgs boson self-couplings defined by $\rm m_{_{H}}$ in SM

Very difficult due to the "direct" double H production, which interferes with the signal

Probably hopeless in any planned experiment

(ø)

 $3m_H^2$

HH events from the self-interaction diagrams are soft Multitude of HH channels, no golden one => Complex analyses (ML usage)

Search for HH process

8 decay channels annalysed

CMS

Summary

Only a small sample Higgs measuremnts at CMS presented today

- We have learned much about the Higgs boson since its discovery
 - $\circ~$ Its mass is known with ~0.1% precision
 - First measurements of its total witdth (with off-shell decays) performed
 - $\circ~$ Cross-section known with up to ~10% precision
 - Couplings to other particles probed
- ◎ Still need to establish couplings to 2nd generation fermions
 - Coupling to muons on the reach of HL-LHC (3 s.d. already),
 - Big effort to probe coupling to charm

and Higgs self coupling

• HH pair production should be observed in HL-LHC

- => Results in agreement with the Standard Model
- Data-taking continues:
 - Annalysing of Run-3 data (~180/fb collected, >300/fb expected)
 - HL-LHC, with upgraded CMS detector, improved theory calculations and analysis techniques will enable even more precise measurements

BACKUP

Run-3 measurements

Measurements with 2022 data at 13.6TeV, 34.7/fb

 $H \to \gamma\gamma ~(\text{CMS-PAS-HIG-23-014})$

$H \to 4\ell ~(\text{CMS-PAS-HIG-24-013})$

Cross section at different \sqrt{s}

CMS-PAS-HIG-23-014

Good agreement with SM

XXXI Epiphany, 13. I. 2025

Run-3 measurements

Measurements with 2022 data at 13.6TeV, 34.7/fb

 $H \to \gamma \gamma ~(\text{CMS-PAS-HIG-23-014})$

 $H \to 4\ell ~(\text{CMS-PAS-HIG-24-013})$

Good agreement with SM