CMS searches for new physics in the Higgs sector

Michał Szleper National Center for Nuclear Research, Warsaw

on behalf of the CMS Collaboration Research partially funded by NCN grant 2021/41/B/ST2/01369

Epiphany 2025 Conference, Cracow, January 13-17, 2025

Only one Higgs boson found so far... could there be more out there?

- Possible extensions of the SM Higgs sector:
 - Additional Higgs singlets, e.g., **TRSM** one extra scalar per singlet,
 - Additional Higgs doublets, e.g., **2HDM, MSSM** 5 bosons: H, X, A, H^{\pm} ,
 - Combination of doublets and singlets, e.g., **2HDM+S, NMSSM** 7 bosons: H, Y, X, A, a, H^{\pm} ,
- Possible new scalars: X, Y $(m_X > m_Y)$, and pseudoscalars: A, a $(m_A > m_a)$,
- Possible decays: X \rightarrow HH, X \rightarrow YH, A \rightarrow ZH, H \rightarrow aa, X, A \rightarrow ff,
- Similar phenomenology:
 - models with Warped Extra Dimensions: spin-0 radion (R), spin-2 graviton excitations (G), $R, G \rightarrow HH$,
 - models with W', Z', e.g. Heavy Vector Triplet model: spin-1 $V' \rightarrow VH$,
- Many potentially interesting final states to explore.

CMS searches for A, V' \rightarrow V H

Channel	Analysis / Paper	Dataset	Mass range covered
$A \rightarrow Z(II, vv) H(bb resolved)$	EPJC 79 (2019) 564	36 fb ⁻¹	225-1000 GeV
A \rightarrow Z(II) H($\tau\tau$)	HIG-22-004 Preliminary	138 fb ⁻¹	220-800 GeV
W' \rightarrow W(Iv) H(bb merged)	PRD 105 (2022) 032008	137 fb ⁻¹	1000-4500 GeV
V' \rightarrow V(jj merged) H(bb merged)	PLB 844 (2023) 137813	138 fb ⁻¹	1300-6000 GeV
$Z' \rightarrow Z(II, vv) H(bb merged)$	EPJC 81 (2021) 688	137 fb ⁻¹	800-4600 GeV
Z' \rightarrow Z(II,νν) H(jj merged)	2411.00202 NEW! (submitted to JHEP)	138 fb ⁻¹	1400-5000 GeV

$\textbf{A} \rightarrow \textbf{Z(ee, \mu\mu) H(\tau\tau)}$

CMS PAS HIG-22-004

- 2 Z decay modes x 3 H decay modes ($e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) considered,
- H 4-vector reconstructed with FastMTT algorithm (ME techniques) [1603.05910], using p_T^{miss} vector and putting $m_H = 125$ GeV as input
 - \rightarrow estimate of "constrained A mass" m^c_{ltt} with a 5-7% resolution,
- Improvements wrt. 1910.11634 (36 fb⁻¹):
 - inclusion of b associated production (2 event categories: \geq 1 b-tag, no b-tag),
 - improved b jet identification DeepJet algo [1712.07158, 2008.10519],
 - improved τ identification DeepTau [2201.08458],
- Exclusions in the $tan\beta$ vs. m_A plane in MSSM benchmark scenarios.

$Z' \to Z(ee, \mu\mu, \nu\nu) \text{ H(jj merged)}$

CMS PAS B2G-23-008 2411.00202

- H candidate: AK8 jet with $p_T > 200$ GeV, $\Delta \phi(H,Z) > 2$,
- For vv: $p_T^{miss} > 250 \text{ GeV}$, for II: $p_T^Z > 200 \text{ GeV}$, $\Delta R(I,I) < 0.45$,
- Changes wrt. previous analysis 2102.08198 (137 fb⁻¹):
 - improved ML jet flavor tagging techniques to discriminate against QCD background, ParticleNetMD algo [1902.08570],
 - inclusion of H \rightarrow cc and H \rightarrow VV^{*} \rightarrow 4q, improved sensitivity to high resonance masses,
 - require ≤ 1 b-tag to minimize overlap with 2102.08198,
- Upper limits on Z' couplings to fermions and bosons in the HVT model.

Combination of CMS resonant HV searches

6

$V' \rightarrow HV$ vs. other decay channels

CMS PAS B2G-23-002 2403.16926 (submitted to PR)

- Assuming branching fractions of **HVT models** A (left) and B (right) [1402.4431] :
 - Model A (weakly coupled extended gauge symmetry): fermionic final states dominate,
 - Model B (Minimal strongly coupled Composite Higgs Model): VV and HV are most sensitive,
- Interesting also in the context of models with 2 complex Higgs doublets:
 - hMSSM,
 - general 2HDM,
 - for detailed interpretations see 2403.16926

CMS searches for $\ensuremath{\:X} \to H\ensuremath{\:H}$

Channel	Analysis / Paper	Dataset	Mass range covered
$X \rightarrow H(WW \rightarrow l\nu l\nu, l\nu qq) H(bb merged)$	JHEP 05 (2022) 005	138 fb ⁻¹	800-4500 GeV
$X \rightarrow H(WW, \tau\tau) H(WW, \tau\tau)$	JHEP 07 (2023) 095	138 fb ⁻¹	250-1000 GeV
$X \rightarrow H(\gamma\gamma) H(bb resolved)$	JHEP 05 (2024)	138 fb ⁻¹	260-1000 GeV
$X \rightarrow H(WW \rightarrow IvIv, Ivqq) H(bb)$	2403.09430 NEW! (submitted to JHEP)	138 fb ⁻¹	250-900 GeV
$X \rightarrow H(bb merged) H(bb)$	2407.13872 NEW! (submitted to JHEP)	138 fb ⁻¹	1000-3000 GeV
$X \rightarrow H(\gamma\gamma) H(\tau\tau)$	HIG-22-012 Preliminary	138 fb ⁻¹	260-1000 GeV

$X \rightarrow H(WW \rightarrow l\nu l\nu, l\nu qq) H(bb)$

2403.09430 (submitted to JHEP)

- One AK8 jet (DeepCSV) or 2 AK4 jets (DeepJet), at least 1 b-tag,
 + 1 lepton and ≥1 AK4 jet not b-tagged (lvqq), or 2 leptons (lvlv),
- Targeted signal: WED with spin-0 radion or spin-2 graviton,
- Events classified based on multiclass DNN outputs, 1 signal (lvqq or lvlv) and 5 (lvqq) or 7 (lvlv) background nodes,
- Heavy Mass Estimator [1701.04442] to reconstruct HH mass in lvlv.

$X \rightarrow H(bb merged) H(bb)$

2407.13872 (submitted to JHEP)

- Two AK8 jets (J₁,J₂) or one AK8 jet (J) and 2 AK4 b-tagged jets (j₁,j₂),
- Improved DeepAK8 b-tagging [2004.08262], required at least 1 tight b-tag, DeepAK8 score sidebands used for background CRs,
- Selections: $|\Delta\eta(HH)| > 1.3$, for semi-resolved: $\Delta R(J,jj) > 0.8$, $\Delta R(j_1,j_2) < 1.5$,

• Corrected di-Higgs mass:

$$\begin{split} m_{\rm HH} &= m_{\rm JJ} + (m_{\rm H} - m_{\rm J1}) + (m_{\rm H} - m_{\rm J2}) \\ \text{for merged, or} \\ m_{\rm HH} &= m_{\rm Jjj} + (m_{\rm H} - m_{\rm J}) + (m_{\rm H} - m_{\rm j1j2}), \\ \text{for semi-resolved,} \end{split}$$

• Targeted signal: WED, spin-0 or spin-2, in bins of m_{HH} and m_{J1} .

$X \to H(\tau \tau) \ H(\gamma \gamma)$

CMS PAS HIG-22-012

- Hadronic and leptonic τ decays considered,
- At least 2 high- p_T photons, $p_T^{\gamma_1}/m_{\gamma\gamma} > 1/3$, $p_T^{\gamma_2}/m_{\gamma\gamma} > 1/4$,
- Parametric Neural Network trained to identify signal for different m_x (and m_y), spin 0 or spin 2, pNN output used for event categorization,
- Maximum likelihood fits to $m_{\gamma\gamma}$ separate for each mass hypothesis.

Examples of pNN scores

11

Combination of CMS resonant HH searches

$X \rightarrow HH vs.$ other exclusions in BSM models

2403.16926 (submitted to PR)

CMS searches for $\ensuremath{\:X} \to \ensuremath{\:Y} \ensuremath{\:H}$

Channel	Analysis / Paper	Dataset	Mass range covered
$X \rightarrow Y$ (bb resolved) H($\tau\tau$)	JHEP 11 (2021) 057	137 fb ⁻¹	X: 240-3000 GeV Y: 60-2800 GeV
$X \rightarrow Y(bb \text{ merged}) H(bb \text{ merged})$	PLB 842 (2023) 137372	138 fb ⁻¹	X: 900-4000 GeV Y: 60-600 GeV
$X \rightarrow Y(bb resolved) H(\gamma\gamma)$	JHEP 05 (2024) 316	138 fb ⁻¹	X: 300-1000 GeV Y: 90-800 GeV
$X \rightarrow Y(bb resolved) H(bb resolved)$	HIG-20-012 Preliminary	138 fb ⁻¹	X: 400-1600 GeV Y: 60-1400 GeV
X → Y(ττ) H(γγ), Y(γγ) H(ττ)	HIG-22-012 Preliminary	138 fb ⁻¹	X: 300-1000 GeV Y: 50/70-800 GeV

Note: All the above searches are also relevant to $X \rightarrow HH$

$X \rightarrow Y$ (bb resolved) H(bb resolved)

CMS PAS HIG-20-012

- Four AK4 b-tagged jets, 4b (signal) and 3b (background dominated),
- Validation Region and Control Region based on reconstructed m_H ,
- SM background assessed from 3b sample, BDT-based weights calculated in CR to reproduce 4b sample, validated in VR,
- Generic spin-0 signal, 2-dim m_x vs. m_y.

Largest excess observed at $m_x = 700$ GeV, $m_y = 400$ GeV, with a local (global) significance of 4.1 (2.8) s.d.

15

Combination of CMS X \rightarrow YH searches

All Y(bb) channels

2403.16926 (submitted to PR)

- New results from bbbb resolved HIG-20-012 fully competitive, with significant improvements for m_x < 1000 GeV,
- Interpretations within the NMSSM: only parameter dependent exclusions, but for $m_Y \le 150$ GeV limits close to maximally allowed values.

 $\overline{\bigcirc}_{3}$ 95% CL limit on σ (pp → X → YH)B(Y → γγ) [fb]

CMS *Preliminary* 138 fb⁻¹ (13 TeV) **CMS** Preliminary 138 fb⁻¹ (13 TeV)

[q] 10¹⁴ (11 / 10¹² [d] (γγ ← Observed 68% expected 68% expected Observed Median expected 95% expected = 800 GeV (x108 95% expected ---- Median expected - YH)B(Υ my = 800 GeV (×10¹⁴) 107 700 GeV (x10 my = 700 GeV (×1013) × 10⁵ ↑ ry = 600 GeV (×10¹²) ΥH CL limit on $\sigma(pp$ 10¹⁰ = 500 GeV (×101 10³ î = 400 GeV (×1010 → X)B(X 10⁸ = 300 GeV (×109 10 95% 125 GeV (×10⁰ y = 250 GeV (×108) 10 400 600 800 1000 1200 10⁶ = 200 GeV (×107) m_X [GeV] → YH)B(Y a(pp = 150 GeV (×106) 105 10 = 125 GeV (×105 125 GeV (x105 CL limit on × ↑ = 100 GeV (×104 95% CL limit on $\sigma(pp$ = 90 GeV (×103) 10³ 95 GeV (x10³ = 80 GeV (×10²) 90 GeV (×102 100 70 GeV (×101) 10 80 GeV (+101 95% = 50 GeV (×10⁰) 70 GeV (x100 10 400 800 1200 600 1000 400 600 800 1000 1200 m_x [GeV] m_x [GeV]

Largest excess seen in $Y(\tau\tau)H(\gamma\gamma)$ at $m_x = 320$ GeV, $m_y = 60$ GeV,

with a local (global) significance of 2.6 (2.2) s.d.

$X \rightarrow Y(yy) H(\tau\tau)$

 $X \rightarrow Y(\tau\tau) H(\gamma\gamma), Y(\gamma\gamma) H(\tau\tau)$

• NMSSM interpretation: for $m_x < 650$ GeV limits on $\sigma(pp \rightarrow X \rightarrow YH) x$ Br($Y \rightarrow yy$) lower than maximally allowed

132 fb⁻¹ (13 TeV)

Limit below maximally

allowed in NMSSM

CMS Preliminary

[VeV] 150 m_Y

110

100

90

80

70 -300

400

500

600

700

800

900

1000 m_X [GeV]

 $X \rightarrow Y(\tau\tau) H(\gamma\gamma)$

CMS searches for $\ H \rightarrow a \ a$

Channel	Analysis / Paper	Dataset	Mass range covered
$H \rightarrow aa \rightarrow bbbb$	JHEP 06 (2024) 097	138 fb ⁻¹	15 – 60 GeV
$H \rightarrow aa \rightarrow \mu\mu bb, \tau\tau bb$	EPJC 84 (2024) 493	138 fb ⁻¹	12 – 60 GeV
X,H \rightarrow aa \rightarrow µµµµ	2407.20425 NEW! (submitted to JHEP)	137 fb ⁻¹	0.21 – 60 GeV
$H \rightarrow aa \rightarrow \mu\mu\tau\tau, \tau\tau\tau\tau$	SUS-24-002 Preliminary	138 fb ⁻¹	4 – 15 GeV

$H \rightarrow aa \rightarrow bbbb\,$ and $\,H \rightarrow aa \rightarrow \mu \mu bb,\,\tau\tau bb$

JHEP 06 (2024) 097

- Associated WH or ZH production + leptonic W, Z decays,
- Four AK4 jets, SR: at least 3 b tags.

• τ decays: eµ, eτ_h, µτ_h,

• Two AK4 jets, at least 1 tight b tag

• Limits on $B(H \rightarrow aa)$ in 2HDM+S scenarios.

EPJC 84 (2024) 493

$H \rightarrow aa \rightarrow \mu \mu \tau \tau, \, \tau \tau \tau \tau \, and \, X, \, H \rightarrow aa \rightarrow \mu \mu \mu \mu$

CMS PAS SUS-24-002

- Pairs of $\tau_{\mu}\tau_{1prong}$ or $\mu\tau_{1prong}$ Lorentz boosted,
- 2 same sign muons with $\Delta R > 1.5$ with 1 opposite sign particle within $\Delta R < 0.5$

2407.20425

• No Higgs constraint (model independent), 2 dimuons with consistent masses 10-60 GeV,

Hit of the season: A, X \rightarrow tt

Search for A, X \rightarrow tt

CMS PAS HIG-22-013 Preliminary!

- Final states: Ijbb exactly one lepton + 3 jets or ≥4 jets, including 2 b-tags,
 Ilbb exactly 2 leptons + at least 2 jets, including 1 b-tag,
- tt reconstruction:
 - p^{ν} from p_T^{miss} , using W and t mass constraints [ljbb: 1305.1878, llbb: hep-ph/0603011],
 - assignment of jets to final state quarks based on mass probability densities,
- Backgrounds: SM tt (**pQCD only**), single top simulation,
- Signal: $\Phi = H, A, \eta_t$ (¹S₀^[1] tt bound state, simplified model [2102.11281]), signal extraction: B. Fuks, K. Hagiwara, K. Ma, Y.-J. Zheng
 - from 2D templates m_{tt} vs. $|\cos\theta_{tt}^{*}|$ (ljbb),
 - from 3D templates m_{tt} vs. spin correlation observables c_{hel} , c_{han} (IIbb)

Search for A, $X \rightarrow tt$ (contd.)

• Clear excess of events (>5 s.d. total) at the tt threshold observed in all 3 categories

Search for A, $X \rightarrow tt$ (contd.)

• Extracted cross section: $\sigma(\eta_t) = 7.1 \text{ pb} \pm 11\%$ in agreement with non-relativistic QCD prediction

Summary & outlook

- Many new analyses published over the course of last year, mostly continuations and extensions of previous analyses based on 2016 data alone,
- Many improvements in data analysis techniques,
- Run 2 data almost fully analyzed, with a few pending exceptions,
- A few interesting excesses over SM predictions observed, with global significances between 2-3 s.d., otherwise no sign of BSM,
- **Highlight:** first significant (> 5 s.d.) observation of a resonant pseudoscalar structure at the tt production threshold, consistent with a toponium bound state,
- Now turning the focus to Run 3 data.