Heavy Flavour results from ATLAS

Andreas Warburton on behalf of the ATLAS collaboration

> McGill University Montréal, Québec, Canada

XXXIst Cracow EPIPHANY Conference on the recent LHC Results

Kraków, Poland 13-17 January 2025

Outline

- ATLAS heavy-flavour physics studies span numerous topics:
 - **Production:** heavy open-flavour hadrons and onia cross-sections
 - **Decay**: branching fractions, *CP* studies, lifetimes
 - **Spectroscopy**: exotic and conventional hadrons
 - **Strengths:** muon final states, vertexing, extensive kinematic ranges
- Latest topics, for Epiphany 2025:
 - **Charmonium**: differential J/ψ and $\psi(2S)$ meson production cross-sections

- Today: first public presentation
- **Open beauty**: precision B^0 meson effective lifetime measurement Today: first international-conference presentation

Epiphany 2025 January 13-17 Kraków, Poland

Eur. Phys. J. C 84 (2024) 189 ATLAS Briefing

• Open charm: differential D^{\pm} and D_s^{\pm} meson production cross-sections <u>arXiv:2412.15742 (submitted JHEP)</u>

arXiv:2411.09962 (submitted EPJC) ATLAS Briefing

Andreas Warburton, McGill University

ATLAS detector subsystems and triggers for Heavy Flavour studies

- **Muon Spectrometer**: reconstruction $p_{T} > 2.5$ GeV
- **Inner Detector tracking systems**: $p_T > 0.5$ GeV, $|\eta| < 2.5$

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

- and High-Level Trigger (software)
- Triggering for heavy flavour, typically
 - di-muon and single-muon triggers
 - Muon p_T thresholds: 4, 6, 11 GeV
 - More info: <u>B-physics trigger performance</u>

On behalf of the ATLAS collaboration

3

Motivation and Analysis Approach

- Heavy quarkonia uniquely probe near the boundary between pQCD and non-pQCD
- Quarkonium production occurs via two mechanisms:
 - **Prompt**: short-lived QCD processes, either in *pp* interactions or feed-down from heavier states
 - **Non-prompt**: *b*-hadron decays
- pQCD much better at describing non-prompt than prompt production
- Kinematic range now pushed to significantly higher regimes, previously unexplored:
 - J/ψ : $p_T < 100 \text{ GeV} \rightarrow p_T < 360 \text{ GeV}$
 - $\psi(2S): p_T < 100 \text{ GeV} \rightarrow p_T < 140 \text{ GeV}$
- Achieved using an updated trigger strategy, to overcome insufficient angular resolution at high p_T :
 - Low $p_T(\psi) < 60$ GeV: use di-muon triggers
 - High $p_T(\psi) > 60$ GeV: use single-muon trigger (50 GeV muon p_T threshold)

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University On behalf of the ATLAS collaboration

Eur. Phys. J. C 84 (2024) 189

ATLAS Briefing

<u>Distinguish</u> between $[J/\psi, \psi(2S)]$ and [Prompt, Non-prompt] by 2D fits of **di-muon mass** and **pseudo-proper lifetime**

• 2D $m_{\mu\mu}$, τ Fits: 3 rapidity (y) bins \times 34 p_T bins (in interval 8-360 GeV) = 102 phase-space bins Prompt Reconstructed pseudo-proper lifetime: $m_{\mu\mu}L_{xy}$ SV PV

Differential cross-sections <u>determined</u> from prompt (P) and non-prompt (NP) J/ψ and $\psi(2S)$ yields:

$$\frac{\mathrm{d}^2 \sigma^{\mathrm{P,NP}}(pp \to \psi)}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \times \mathcal{B}(\psi \to \mu^+ \mu^-) = \frac{1}{\mathcal{A}(\psi) \epsilon_{\mathrm{trig}} \epsilon_{\mathrm{trig}} \mathrm{SF} \epsilon_{\mathrm{reco}} \epsilon_{\mathrm{trig}} \mathrm{SF} \epsilon_{\mathrm{reco}} \epsilon_{\mathrm{trig}} \mathrm{SF} \epsilon_{\mathrm{trig}} \mathrm{SF} \epsilon_{\mathrm{reco}} \epsilon_{\mathrm{trig}} \mathrm{SF} \epsilon_{$$

Also <u>extracted</u>: fraction of NP production F_{ψ}^{NP} and $R^{P,NP}$, the $\psi(2S)$ to J/ψ production ratios

Charmonium: differential J/ψ and $\psi(2S)$ production cross-sections

Andreas Warburton, McGill University

- J/ψ [$\psi(2S)$] cross-sections
- plateau at higher p_T

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Theory-Comparison Implications

- **Prompt** J/ψ production: predicted spectra harder than those measured; room to improve all models
- Non-prompt J/ψ production: predictions better, though still over-estimating at higher p_T
- Similar trends for the $\psi(2S)$ analogues

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Open Charm: differential D^{\pm} and D_{s}^{\pm} meson cross-sections

- Heavy hadron production in pp collisions is a fundamental process that tests perturbative QCD calculations, which have had persistently large uncertainties:
 - Hard-scatter energy scales are comparable to the heavy quark masses
 - **Prompt hadronisation** of charm quarks vs. **non-prompt production** via *b*-decays
 - Challenges modelling **non-perturbative effects**, *e.g.*, hadronisation
- This study:
 - <u>Measure</u> D^{\pm} and D_s^{\pm} production cross-sections simultaneously and differentially using the channels $D_{(s)}^{\pm} \to \phi \pi^{\pm} \to \mu^{+} \mu^{-} \pi^{\pm}$; less abundant than the analogous $\phi \rightarrow K^+K^-$ process, but can use di-muon triggers and have less background
 - <u>Push</u> measurement of the D_s^{\pm} cross-section up to $p_T = 100$ GeV (a first)

• Selection:

- Di-muon system: triggers, opposite charge, invariant-mass criterion
- Track requirements: total charge, minimum p_T , secondary-vertex criteria
- Main observable: invariant mass, $m_{\mu\mu\pi}$

Epiphany 2025 January 13-17 Kraków, Poland

arXiv:2412.15742 (submitted JHEP)

Andreas Warburton, McGill University

Invariant mass fitting

• Extended unbinned maximum likelihood fit for signal yields in terms of invariant mass $m_{\mu\mu\pi}$:

$$\mathcal{L}(m) = \frac{e^{-(S_{D^{\pm}} + S_{D_{s}^{\pm}} + B)}}{n!} \prod \left[S_{D^{\pm}} P_{D^{\pm}}(m) + S_{D_{s}^{\pm}} P_{D_{s}^{\pm}}(m) + BP_{Bkg}(m) \right] \times \mathcal{G}$$

$$P_{D^{\pm}}(m) = \text{Voigt}(m; m_{D^{\pm}}, \gamma_{D^{\pm}}, \sigma_{D^{\pm}})$$

$$P_{D_{s}^{\pm}}(m) = \text{Voigt}(m; m_{D_{s}^{\pm}}, \gamma_{D_{s}^{\pm}}, \sigma_{D_{s}^{\pm}})$$

$$P_{Bkg}(m) = A_{\text{norm}} \cdot e^{(c_{1}m + c_{2}m^{2})}$$

$$\mathcal{G}(\Delta) = \text{Gauss}(\Delta; \mu_{\Delta}, \sigma_{\Delta})$$

- Voigtian distribution: convolution of Breit-Wigner and Gaussian
- $\Delta \equiv m_{D_s^{\pm}} m_{D^{\pm}}$ mass difference, required to be close to the world-average value μ_{Λ} under a Gaussian constraint
- Fit is designed to be compatible with data in a broad set of kinematic regions while using a small number of parameters

Epiphany 2025 January 13-17 Kraków, Poland

Open Charm: differential D^{\pm} and D_{s}^{\pm} meson cross-sections

Andreas Warburton, McGill University

Open Charm: differential D^{\pm} and D_{s}^{\pm} meson cross-sections

Lifetime fitting

- Lifetime fits: convolutions of Gaussian and error functions with 1 [2] exponentials for prompt [non-prompt] PDFs

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University On behalf of the ATLAS collaboration

• Prompt ($pp \rightarrow c\bar{c}X \rightarrow D^{\pm}_{(s)}X'$) and non-prompt ($pp \rightarrow b\bar{b}Y \rightarrow cY' \rightarrow D^{\pm}_{(s)}Y''$) production processes manifest differently in the ATLAS detector; constrain their relative contributions using the pseudo-proper lifetime observable $m_{\mu\mu\pi}L_{xy}^{\mu\mu\pi}/p_T^{\mu\mu\pi}$

Cross-section determination

- Fiducial volume: $12 < p_T < 100 \,\text{GeV}$ (9 bins) $|\eta| < 2.5$ (5 bins)
- <u>Extract</u> signal yields from invariant mass fits for D^{\pm} and D_{c}^{\pm} simultaneously
- <u>Correct</u> for reconstruction efficiencies in each bin, suitably weighted for prompt and non-prompt production fractions (determined from the lifetime fits)
- <u>Account</u> for **branching fractions**:

$$\mathscr{B}(D^{\pm} \to \phi(\mu\mu)\pi^{\pm}) = \mathscr{B}(D^{\pm} \to \phi\pi^{\pm}) \times \mathscr{B}(\phi \to \mu\mu)$$

$$\mathcal{B}(D_s^{\pm} \to \phi(\mu\mu)\pi^{\pm}) = \frac{\mathcal{B}(D_s^{\pm} \to \phi(K^+K^-)\pi^{\pm})}{\mathcal{B}(\phi \to K^+K^-)} \times \mathcal{B}(\phi \to \mu\mu)$$

Since this quotient of world averages has smaller uncertainty than the $\mathscr{B}(D_{s}^{\pm} \rightarrow \phi \pi^{\pm})$ world average

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Open Charm: differential D^{\pm} and D_{s}^{\pm} meson cross-sections

On behalf of the ATLAS collaboration

11

Cross-section results

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\eta|}\Big|_{j} = \frac{S_{D^{\pm}/D_{s}^{\pm}}^{j}}{\int \mathcal{L}\mathrm{d}t \times C^{j} \times \mathcal{B}(D^{\pm}/D_{s}^{\pm} \to \phi(\mu\mu)\pi^{\pm}) \times \Delta^{j}|\eta|}$$
$$\frac{\mathrm{d}\sigma}{\int \mathcal{L}\mathrm{d}t} = \frac{S_{D^{\pm}/D_{s}^{\pm}}^{i}}{\int \mathcal{L}\mathrm{d}t \times C^{j} \times \mathcal{B}(D^{\pm}/D_{s}^{\pm})}$$

$$\overline{\mathrm{d}p_{\mathrm{T}}}\Big|_{i} \stackrel{=}{=} \overline{\int \mathcal{L}\mathrm{d}t \times C^{i} \times \mathcal{B}(D^{\pm}/D_{s}^{\pm} \to \phi(\mu\mu)\pi^{\pm}) \times \Delta^{i}p_{\mathrm{T}}}$$

Theory comparisons

- D^{\pm} production: at low p_T and in all $|\eta|$ bins, both GM-VFNS and FONLL predictions show good agreement; GM-VFNS shows some overestimation at high p_T
- D_{c}^{\pm} production: only GM-VFNS is available for comparison, showing a similar upward deviation at higher p_T arXiv:2412.15742 (submitted JHEP)

Epiphany 2025 January 13-17 Kraków, Poland

Open Charm: differential D^{\pm} and D_{s}^{\pm} meson cross-sections

Andreas Warburton, McGill University

- HQE (heavy quark expansion) theory describes total decay rate $\Gamma = 1/\tau$ as free b-quark decay at LO plus sub-leading power-suppressed terms invoking perturbative (Wilson coefficients) and non-perturbative matrix elements
- This study: <u>Reconstruct</u> weak hadronic spectator-internal colour-suppressed decays

$$B^0 \rightarrow J/\psi K^*(892)^0$$

and <u>measure</u> their **Effective Lifetime** τ_{R^0}

• $B^0 - B^0$ system has light (L) and heavy (H) mass eigenstates with an average decay width $\Gamma_d \equiv (\Gamma_L + \Gamma_H)/2$, a normalized width difference final-state (f) dependent **amplitude asymmetry** A

Open Beauty: precision B^0 meson lifetime measurement

arXiv:2411.09962 (submitted EPJC)

ATLAS Briefing

• Precise B-meson lifetimes and their ratios test weak-interaction roles and have potential BSM sensitivity

Andreas Warburton, McGill University

On behalf of the ATLAS collaboration

13

Candidate reconstruction and selection criteria

- $B^0 \rightarrow J/\psi K^{*0}$ candidates:
 - At least one $J/\psi \to \mu^+\mu^-$ with $\chi^2/ndof < 10$; within mass window retaining 99.7% J/ψ candidates
 - K^{*0} : Out of the two $K^+\pi^-/K^-\pi^+$ hypotheses, <u>select</u> that closer to $K^*(892)^0$ PDG mass
 - J/ψ and K^{*0} : fit to a common secondary vertex (SV), with di-muon mass constraint to J/ψ PDG mass; $\chi^2/ndof < 3$
 - 10% events have multiple (avg. 2.1) $J/\psi K^{*0}$ candidates; select that with smaller $\chi^2/ndof$
- **Primary vertex (PV)** selection:
 - Need to choose most likely B_d^0 production vertex under pileup conditions (avg. 31) • PV positions are recalculated after removing tracks used to reconstruct B^0_A candidate • PV candidate with smallest 3D B_d^0 impact parameter is chosen
- For each B_d^0 candidate, <u>determine</u> pseudo-proper decay time *t*:

$$t = \frac{m_B L_{xy}^B}{p_T^B}$$
 , where L_{xy}^B is the transverse distance

Epiphany 2025 January 13-17 Kraków, Poland

between PV and SV, projected on to p_T^B

^{*}Open Beauty: precision B^0 meson lifetime measurement

Candidate event display

- Red lines: muon candidates
- Yellow lines: charged hadrons
- Pink ellipses: vertices (PV & SV), separated by ~2 cm
- Energy of 4-track system: 83 GeV, so highly boosted, jet-like!

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

2D unbinned maximum likelihood fit Mass PDFs

- Measured effective lifetime:

Epiphany 2025 January 13-17 Kraków, Poland

Open Beauty: precision B^0 meson lifetime measurement

Pseudo-proper decay time PDFs

- Signal: exponential convolved with 3-Gaussian resolution function

• Based on 2,450,500 \pm 2400 $B^0 \rightarrow J/\psi K^{*0}$ candidate signal events

 $\tau_{B^0} = 1.5053 \pm 0.0012$ (stat.) ± 0.0035 (syst.) ps

Consistency and stability test

- Separate B^0 lifetime fits for each of 3 data-taking periods
- Black points: subsample lifetimes, stat.-only uncertainties
- *p*-value for consistency, stat.-only: 0.038
- Subsample results are consistent, mutually and with full-sample result

Epiphany 2025 January 13-17 Kraków, Poland

Open Beauty: precision B^0 meson lifetime measurement

Andreas Warburton, McGill University

Open Beauty: precision B^0 meson lifetime measurement

Results: Determination of the B^0 average decay width Γ_d and the ratio Γ_d/Γ_s

<u>Use</u> HFLAV (2023) input values of $2y = \Delta \Gamma_d / \Gamma_d = 0.001 \pm 0.010$ and asymmetry $A = -0.578 \pm 0.136$ with the ATLAS measured effective lifetime τ_{R^0} to find:

 $\Gamma_d = 0.6639 \pm 0.0005 \text{ (stat.)} \pm 0.0016 \text{ (syst.)} \pm 0.0038 \text{ (ext.)} \text{ ps}^{-1}$

where the uncertainty (denoted 'ext.') is due to HFLAV inputs and listed separately

• The value of Γ_d agrees with HQE theory (Lenz et al., 2023): $0.63^{+0.11}_{-0.07}$ ps⁻¹

• The value of Γ_d/Γ_s agrees with HQE (1.003 ± 0.006) and lattice QCD (1.00 ± 0.02) theory model predictions

Epiphany 2025 January 13-17 Kraków, Poland

<u>Use</u> $\Gamma_s = 0.6703 \pm 0.0014$ (stat.) ± 0.0018 (syst.) ps⁻¹ measured by ATLAS (Eur. Phys. J. C 81 (2021) 342) to find:

 $\frac{\Gamma_d}{\Gamma_s} = 0.9905 \pm 0.0022 \text{ (stat.)} \pm 0.0036 \text{ (syst.)} \pm 0.0057 \text{ (ext.)}$

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University On behalf of the ATLAS collaboration

Open Beauty: precision B^0 meson lifetime measurement

Closing remarks

- ATLAS heavy-flavour programme is amassing competitive results from LHC Run 2
- Charmonium: Differential J/ψ and $\psi(2S)$ production cross-sections extended up to $p_T = 360$ and 140 GeV Most comprehensive measurement of charmonium production to date
- Open charm: differential D^{\pm} and D_s^{\pm} meson production cross-sections extended up to $p_T = 100$ GeV
 - First D_{c}^{\pm} cross-section measurement to reach transverse momenta of 100 GeV
- None of the consulted **theory predictions** describes charm production well, especially at higher p_T
- Open beauty: precision B⁰ meson effective lifetime measurement Today: first international-conference presentation • Most precise single measurement to date
- Further results under preparation, including combinations of Run 2 + Run 3 statistics
- ATLAS B-physics public results page: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults</u>

Today: first public presentation

Backup Slides

Epiphany 2025 January 13-17 Kraków, Poland

ATLAS heavy flavour in Run 3

- with the shift to higher p_T (even with the associated loss of lower- p_T statistics)

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University On behalf of the ATLAS collaboration

• Similar dimuon triggers used, but, early in fills, more aggressive pre-scaling of those with lower di-muon p_T

• For high-precision measurements (e.g., lifetimes, CP violation), errors on pseudo-proper lifetimes get reduced

ATLAS heavy flavour in Run 4, HL-LHC

- Replacement of entire inner tracking system (ITk upgrade):
 - Refer to talk by Savanna Shaw, Upgrades session
 - Copes with higher instantaneous luminosities, pileup
 - Greater angular acceptance
 - Expect ~21% improvements in pseudo-proper-decay time resolutions
- Reach studies use di-muon triggers with thresholds: $\mu_{10}\mu_{10}$, $\mu_6\mu_{10}$, $\mu_6\mu_6$
- $B_{(s)} \rightarrow \mu^+ \mu^-$: <u>ATL-PHYS-PUB-2018-005</u>
- $B_s^0 \rightarrow J/\psi\phi$: <u>ATL-PHYS-PUB-2018-041</u>

Epiphany 2025 January 13-17 Kraków, Poland

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Eur. Phys. J. C 84 (2024) 189

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Eur. Phys. J. C 84 (2024) 189

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

ATLAS

 $\int Ldt = \begin{array}{c} 2.6 \text{ fb}^{-1} & p_{T} < 60 \text{ GeV} \\ 140 \text{ fb}^{-1} & p_{T}^{-1} \ge 60 \text{ GeV} \end{array}$ *pp* √*s* = 13 TeV $0 \le |y| < 0.75$ Non-prompt $\psi(2S)$

Eur. Phys. J. C 84 (2024) 189

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Epiphany 2025 January 13-17 Kraków, Poland

Andreas Warburton, McGill University

Open Charm: differential D^{\pm} and D_s^{\pm} meson cross-sections

Source of uncertainty ID alignment Choice of mass window Time efficiency Best-candidate selection Mass fit model Mass-time correlation Proper decay time fit model Conditional probability model Fit model test with pseudo-exp Total

Epiphany 2025 January 13-17 Kraków, Poland

Open beauty: precision B^0 meson lifetime measurement

arXiv:2411.09962 (submitted EPJC)

	Systematic uncertainty [ps]
	0.00108
	0.00104
	0.00130
	0.00041
	0.00152
	0.00229
	0.00010
l	0.00070
periments	0.00002
-	0.0035

