XXXI Cracow EPIPHANY Conference

on the recent LHC results

Marcin Konecki University of Warsaw

(marcin.konecki@fuw.edu.pl)

Heavy flavour results from CMS

CMS detector and BPH

Essentials of CMS BPH (b and Quarkonia) reco: Tracker:

- vertex resolution down to 15μm typically tip (2016) 25-90μm, (2017+) 20-75μm
- for central muons above 99% tracking eff. Muon system:
- identification of track, high-purity muon ID (fake rate ~10⁻³).
- provide muon trigger
- initial momentum assignment
- Muon reconstruction (Tracker+Muon syst):
- combines "tracker" and "muon system" data $\sigma_{p_T}/p_T \sim 1\%$ in barrel (3% in endcaps).
- dimuon mass resolution (η dependent) $\sigma_M/M \sim 0.6-1.5\% \rightarrow \sigma_{J/\psi} \approx 20 - 70 \text{ MeV}$

Since 2017 new Pixel Detector.

- first layer closer to beam pipe (3.9cm)
- 4 layers to improve: purity, low p_T reach, precision

New readout chip recovers inefficiency at high pile up CERN-LHCC-2012-016
 Can tolerate L=2x10³⁴cm⁻²s⁻¹, 100 PU, integrated luminosity of 500fb⁻¹

Dimuon triggers (for b,c-physics)

Selection of recent results

	78	<u>BPH-23-004</u>	Evidence for CP violation and measurement of CP-violating parameters in ${ m B}^0_s o { m J}/\psi\phi(1020)$ decays in pp collisions at $\sqrt{s}=$ 13 TeV	Submitted to PRL	26 December 2024
	77	BPH-21-002	Angular analysis of the ${ m B}^0 o { m K}^*(892)^0\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to PLB	18 November 2024
	76	BPH-22-012	Test of lepton flavor universality in semileptonic ${\rm B}_c^+$ meson decays in proton-proton collisions at $\sqrt{s}=$ 13 TeV	Submitted to PRL	1 August 2024
	75	BPH-22-001	Measurement of the ${\rm B}^0_s\to {\rm J}/\psi {\rm K}^0_{\rm S}$ effective lifetime from proton-proton collisions at $\sqrt{s}=$ 13 TeV	<u>JHEP 10 (2024) 247</u>	2024-10-31
	74	BPH-22-009	Measurement of the polarizations of prompt and non-prompt ${\rm J}/\psi$ and $\psi(2{\rm S})$ mesons produced in pp collisions at $\sqrt{s}=$ 13 TeV	<u>PLB 858 (2024)</u> <u>139044</u>	2024-10-01
	73	BPH-23-005	Search for CP violation in ${ m D}^0 o { m K}^0_S { m K}^0_S$ decays in proton-proton collisions at $\sqrt{s}=$ 13 TeV	<u>EPJC 84 (2024)</u> <u>1264</u>	2024-12-06
	72	BPH-22-006	Observation of the ${ m J}/\psi o \mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}=$ 13 TeV	<u>PRD 109 (2024)</u> L111101	2024-06-06
	CMS-PAS-BPH-23-001		Measurement of the ratio of the $B_c^+ \to J/\psi \tau^+ \nu_\tau$ and $B_c^+ \to J/\psi \mu^+ \nu_\mu$ branching fractions using three-prong τ lepton decays in proton-proton collisions at $\sqrt{s} =$ 13 TeV		29 August 2024
	CMS-PAS-BPH-23-008		Search for rare charm decays into two muons (Run3)		28 July 2024
	CMS-PAS-BPH-22-007		Measurement of double-differential and total charm-production cross sections at 7 TeV		23 July 2024
→	65	BPH-21-006	Measurement of the ${ m B}^0_s o\mu^+\mu^-$ decay properties and search for the ${ m B}^0 o\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}=$ 13 TeV	<u>PLB 842 (2023)</u> <u>137955</u>	2023-05-12

M. Konecki, Heavy flavour results from CMS

CM

Recent CPV results $(B_s \rightarrow J/\psi\phi, D^0 \rightarrow K_s K_s)$

CP violation in CKM matrix

CPV in $B_s \to f_{CP} = J/\psi \phi$

The $B - \overline{B}$ states can oscillate due to box diagrams, common description – state mixing. One can identify L-light and H-heavy mass eigenstates:

$$|B_{(s)L,H}\rangle = p |B_{(s)}^{0}\rangle \pm q |\bar{B}_{(s)}^{0}\rangle$$
where, for $B_q - \overline{B_q}$ system $(q = d, s)$:

$$\frac{q}{p} \approx \frac{V_{tb}^* V_{tq}}{V_{tb} V_{tq}^*} \quad \text{here } \left|\frac{q}{p}\right| \approx 1$$
In the case when both $B_{(s)}$ and $\bar{B}_{(s)}^{0}$ may decay to the same
CP eigenstate f_{CP} (η_f - CP eigenvalue) and only single weak
phase contributes $b \rightarrow c + \bar{c}s$:

$$\frac{\bar{A}}{A} \equiv \frac{A\left(\overline{B_{(s)}}^{0} \rightarrow f_{CP}\right)}{A\left(B_{(s)}^{0} \rightarrow f_{CP}\right)} = \eta_f \frac{V_{cs}^* V_{cb}}{V_{cs} V_{cb}^*} \quad \text{here } \left|\frac{\bar{A}}{A}\right| \approx 1$$
CPV in decay: $\left|\frac{\mathcal{A}_{\overline{M} \rightarrow \overline{f}}}{\mathcal{A}_{M \rightarrow f}}\right| \neq 1$
 $\Gamma(M \rightarrow f) \neq \Gamma(\overline{M} \rightarrow \overline{f})$
Finally, since it is possible:

Finally, since it is possible:

$$B_{(s)}^{0} \to f_{CP}$$
 and $B_{(s)}^{0} \to \overline{B_{(s)}}^{0} \to f_{CP}$

The decay width of initially produced B^0/\overline{B}^0 :

$$a_{CP} = \frac{\Gamma\left(B_{(s)}^{0}(t) \to f_{CP}\right) - \Gamma\left(\overline{B_{(s)}}^{0}(t) \to f_{CP}\right)}{\Gamma\left(B_{(s)}^{0}(t) \to f_{CP}\right) + \Gamma\left(\overline{B_{(s)}}^{0}(t) \to f_{CP}\right)} \propto \eta_{f} \operatorname{Im}\left(\frac{q}{p}\frac{\bar{A}}{A}\right) \sin(\Delta m t) \left| \frac{\lambda_{CP}}{\lambda_{CP}} \right|$$

M. Konecki, Heavy flavour results from CMS

CPV in decay:
$$\left| \frac{\mathcal{A}_{\overline{M} \to \overline{f}}}{\mathcal{A}_{M \to f}} \right| \neq 1$$

 $\Gamma(M \to f) \neq \Gamma(\overline{M} \to \overline{f})$

interference
$$\operatorname{Im}\left(\frac{q}{p} \cdot \frac{\mathcal{A}_{\overline{M} \to f}}{\mathcal{A}_{M \to f}}\right) \neq 0$$

(interplay between mixing and decay)
 $\Gamma(M \to f) \neq \Gamma(\overline{M} \to f)$

CMS-BPH-23-004

The $B_s \to J/\psi \phi(1020) \to \mu^+ \mu^- K^+ K^-$ is one of "golden channels" to study CP violation.

- in good approximation there is only single weak phase contributing to decay penguin diagram contributions are minor
 96.5 fb⁻¹ (2017,2018)
- the final state can be reconstructed with high signal to background ratio (measurable final signature, intermediate object mass constraint on J/ψ , (ϕ -broad));
- clear signature for triggering: J/ψ → μ⁺μ⁻, note: third muons a tagger. [two triggers: J/ψ → μ⁺μ⁻with tagging μ or displaced J/ψ → μ⁺μ⁻+φ → K⁺K⁻vertex.]
 Difficulty: Final state is a mixture of CP-even and CP-odd states.
- Spin-0 pseudoscalar B_s decays into spin-1 vector mesons J/ψ and $\phi(1020)$
- Decay amplitude decomposed into three polarization states (different CP):

 $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+ \mu^- K^+ K^-$

- Recent Improvement: inclusive flavour tagging framework with Machine Learning techniques: OS muon, OS electron, OS jet, SS particle. Tagging calibrated with of $B^+ \rightarrow J/\psi K^+$, validated with $J/\psi K^*(892)^0 \rightarrow \mu^+\mu^-K^+\pi^-$
- another key factor: excellent time resolution to handle fast $B_s^0 \leftrightarrow \overline{B_s}^0$ oscillations

M. Konecki, Heavy flavour results from CMS

$B_s \rightarrow J/\psi \ \phi(1020)$ results: measurement of ϕ_s and $\Delta\Gamma_s$ and Δm_s

Parameter	Fit value	Stat. unc.	Syst. unc.	•	$\phi_{\rm s} = -2\beta_{\rm s}$ in agreement with SM and WA:
$\phi_{\rm s}$ [mrad]	-73	± 23	± 7		$\phi_s^{SM} = -37 \pm 1 \text{ mrad},$
$\Delta\Gamma_{ m s}~[{ m ps}^{-1}]$	0.0761	± 0.0043	\pm 0.0019		$\phi_s^{WA} = -49 \pm 19 \text{ mrad}$
$\Gamma_{ m s}$ [$ m ps^{-1}$]	0.6613	± 0.0015	± 0.0028	•	$\Lambda \Gamma^{SM} = 0.091 \pm 0.013 n s^{-1}$
$\Delta m_{ m s} [\hbar { m ps}^{-1}]$	17.757	± 0.035	± 0.017		$\Delta \Gamma_s^{WA} = 0.084 \pm 0.005 \ ps^{-1}$
$ \lambda $	1.011	± 0.014	± 0.012		$\Sigma W^A = 0.0001 \pm 0.0000 \text{ ps}^{-1}$
$ A_0 ^2$	0.5300	$+ 0.0016 \\- 0.0014$	± 0.0044	•	$\Gamma_s^{WH} = 0.65/3 \pm 0.0023 ps^{-1}$
$ A_{\perp} ^2$	0.2409	± 0.0021	± 0.0030	٠	$\Delta m_s^{SM} = 18.77 \pm 0.86 p s^{-1},$
$ A_{\rm S} ^2$	0.0067	± 0.0033	\pm 0.0009		$\Delta m_s^{WA} : 17.765 \pm 0.006 p s^{-1},$
δ_{\parallel} [rad]	3.145	± 0.089	± 0.025	•	$ \lambda = q \overline{A} $ subjects with no direct CDV.
δ_{\perp} [rad]	2.931	± 0.089	± 0.050	•	$ \lambda - \frac{-}{pA} $ consistent with no direct CPV
$\delta_{\mathrm{S}\perp}$ [rad]	0.48	± 0.15	± 0.05		

CMS: First evidence of CP violation in this channel (previously Δm_s and $|\lambda|$) by CMS

M. Konecki, Heavy flavour results from CMS

-10-

Eur. Phys. J. C 84 (2024) 1264 41.6 fb⁻¹ (2018)

- In contrast to *K*, *B* systems CP violation in charm mesons suppressed by Glashow–Iliopoulos–Maiani mechanism \rightarrow search for new physics
- CP violation in $D^0 \to K^+K^-$ and $\pi^+\pi^-$ observed by LHCb

• Goal: $A_{CP} = \frac{\Gamma(D^0 \to K_S K_S) - \Gamma(\overline{D}^0 \to K_S K_S)}{\Gamma(D^0 \to K_S K_S) + \Gamma(\overline{D}^0 \to K_S K_S)}$, LHCb, Belle: $(-1.9 \pm 1.1)\%$.

- fully hadronic final state trigger: single-muon intended for $b \rightarrow c\mu X$ or $c \rightarrow s\mu X$, c from cascade decays, with transverse-impact parameter. Trigger thresholds varying with instantaneous luminosity+levelling. Rely on parking datasets, 1.2×10^{10} events in 41.6 fb^{-1}
- flavour of D^0 meson from $D^{*+} \to D^0 \pi^+$ decays (pion ch. tags D^0/\overline{D}^0).
- We measure CP asymmetry difference ΔA_{CP} between signal channel $(D^0 \rightarrow K_S K_S)$ and reference non-CPV $(D^0 \rightarrow K_S \pi^+ \pi^-)$, measured prev. to be consistent with 0.
- Several components contribute to asymmetry: $A_{CP} \approx A_{CP}^{raw} A_{CP}^{pro} A_{CP}^{det}$

•
$$A_{CP}^{raw} = \frac{N(D^{*+} \to D^0 \pi^+) - N(D^{*-} \to \overline{D}^0 \pi^-)}{N(D^{*+} \to D^0 \pi^+) - N(D^{*-} \to \overline{D}^0 \pi^-)}$$

• A_{CP}^{pro} - production effects, A_{CP}^{det} - detector effects cancels out while measuring A_{CP} for signal and reference channel.

•
$$\Delta A_{CP} = A_{CP}(K_S K_S) - A_{CP}(K_S \pi^+ \pi^-) = A_{CP}^{raw}(K_S K_S) - A_{CP}^{raw}(K_S \pi^+ \pi^-)$$

Search for CP violation in $D^0 \rightarrow K_s K_s$

- consistent with no CP violation.
- first CMS CPV result in charm sector, main uncertainty due to statistics \rightarrow improvements

Highlights of other recent results

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

140 fb⁻¹ (2016-2018)

- purpose: measure a set of observables in angular analysis, already measured by CMS (Run1) & others
- $b \rightarrow sll \text{ loop FCNC SM BR } O(10^{-6})$
- Angular parameters for $\frac{d^4N}{dq^2dcos\theta_Kdcos\theta_l dcos\phi}$ from 4D fit (dep. q^2) to mass and angular distributions $(\theta_l, \theta_K, \phi)$ [small differences in definitions wrt LHCb]: $F_L, P_1, P_2, P'_4, P'_5, P'_8$ [JHEP 01 (2009)019, JHEP01 (2013) 048, JHEP05(2013)137]
- result: some tensions in q^2 below J/ψ for P_2 and P'_5 , good agreement with LHCb results.
- results among most precise exp. measurements

CMS-BPH-21-002

$$R_{J/\psi} = \frac{BR(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{BR(B_c^+ \to J/\psi\mu^+\nu_{\mu})} \text{ with } J/\psi \to \mu^+\mu^-,$$

• $R_{J/\psi} = 0.17 \pm 0.33$ [$0.17^{+0.18}_{-0.17}(stat)^{+0.21}_{-0.22}(syst)^{+0.19}_{-0.18}(theo)$] SM expectation $R = 0.2582 \pm 0.0038$,

- 3 prong τ dcays $\tau^+ \to \pi^+ \pi^- \pi^+ (+\pi^0) \overline{\nu_{\tau}}$
- $R_{J/\psi} = 1.04^{+0.50}_{-0.44}$ 138 fb⁻¹ (2016-2018) CMS PAS BPH-23-001

CMS combined: $R_{I/\psi} = 0.49 \pm 0.25 (stat) \pm 0.09 (syst)$

JHEP 10 (2024) 247

- B_s^0 propagates as B_H or B_L mass eigenstates with different lifetimes $\Delta\Gamma \approx 0.08$ ps related to $B \rightarrow J/\psi K_S$, but penguin diagrams no more Cabibbo suppressed
- $J\psi \to \mu^+\mu^-$, $K_S \to \pi^+\pi^-$, effectively measure B_H , CP-odd.
- effective lifetime: $\tau(J/\psi K_S) = \frac{\int t[\Gamma(B_S^0(t) \to J/\psi K_S) + \Gamma(\overline{B_S}^0(t) \to J/\psi K_S)]dt}{\int [\Gamma(B_S^0(t) \to J/\psi K_S) + \Gamma(\overline{B_S}^0(t) \to J/\psi K_S)]dt}$

M. Konecki, Heavy flavour results from CMS

2022-2023

CMS PAS BPH-23-008

- very rate FCNC expected SM $BR \sim 3 \times 10^{-13}$; any NP may introduce large enhance 64.5 fb⁻¹
- Run-3 analysis, exploring new low-mass double muon trigger
- main background combinatorial; use $D^*(2010)^+ \rightarrow D^0\pi^+$ decays. Normalization: $D^0 \rightarrow \pi^+\pi^-$.

• Result: no significant excess of events above background, $BR(D^0 \rightarrow \mu^+ \mu^-) < 2.6 \times 10^{-9} (95\% \text{ CL}); \text{ most sensitive measurement to date}$

rare $B_s/B_d \rightarrow \mu^+\mu^-$ decays

- two of CMS flagship channels, Phys. Lett. B 842 (2023) 137955 JHEP04 (2020) 188 Nature 522 (2015) 68
- In the SM the tree-level diagrams do not contribute to FCNC, but can occur by box and penguin diagrams. Helicity suppressed by $\left(\frac{m_{\mu}}{m_{P}}\right)^{2}$, CKM suppressed $|V_{ts,td}|^{2}$
 - $B_{s}^{0} \rightarrow \mu^{+}\mu^{-} SM \qquad B_{s}^{0} \rightarrow \mu^{+}\mu^{-} \mu^{+} B_{s}^{0} \rightarrow \mu^{+}\mu^{-} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{-} \mu^{-} B_{s}^{0} \rightarrow \mu^{+}\mu^{-} \mu^{-} \mu^{$

Phys.Rev.Lett. 111(2013) 101804

- Rare $B_{(s)}^0 \to \mu^+ \mu^-$ decays are ideal place to look for NP.
- SM predictions [Czaja, Misiak <u>2407.03810</u> see also Beneke et al JHEP 10 (2019) 232, Bobeth et al. Phys.Rev.Lett. 112 (2014) 101801] $BR(B_s^0 \rightarrow \mu^+\mu^-)_{SM} = (3.64 \pm 0.12) \cdot 10^{-9} \quad BR(B^0 \rightarrow \mu^+\mu^-)_{SM} = (9.71 \pm 0.33) \cdot 10^{-11}$

CMS result (2022):

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \left[3.83^{+0.38}_{-0.36} \text{ (stat)}^{+0.19}_{-0.16} \text{ (syst)}^{+0.14}_{-0.13} (f_{s}/f_{u})\right] \times 10^{-9},$$

 $\mathcal{B}(B^{0} \to \mu^{+}\mu^{-}) = \left[0.37^{+0.75}_{-0.67} \text{ (stat)}^{+0.08}_{-0.09} \text{ (syst)}\right] \times 10^{-10}.$

$$\begin{split} \mathcal{B}(\mathrm{B}^{0} \to \mu^{+}\mu^{-}) &< 1.5 \times 10^{-10} \text{ at } 90\% \text{ CL}, \\ \mathcal{B}(\mathrm{B}^{0} \to \mu^{+}\mu^{-}) &< 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL}, \end{split}$$

M. Konecki, Heavy flavour results from CMS

- CMS is well suited for precise heavy flavour analyses.
- Several recent results overviewed:
 - CMS has updated measurement of CPV "golden channel" $B_s \rightarrow J/\psi \phi(1020)$
 - first CMS search for CP violation in charm
 - precise angular measurement in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - most precise limit for $D^0 \rightarrow \mu^+ \mu^-$ decay set
 - test of $b \rightarrow c l \nu$ lepton flavour universality with $R_{J/\Psi}$
 - effective $B_s \rightarrow J/\psi K_s$ lifetime measured
 - rare "flagship" decay $B_s \to \mu^+ \mu^-$ measured by CMS, limits set for $B \to \mu^+ \mu^-$
- no inconsistency with SM found so far
- many other interesting results like available.
 CMS B Physics and Quarkonia (BPH) results