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I Introduction: QCD and Jet Substructure

* Jet substructure (JSS)
measurements allow us to
test QCD

* Provides a pathway to
address open questions in
QCD such as:

* Hadronization and jet formation
* Colour confinement

* Non-perturbative QCD

* Quark gluon plasma

* And more...
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https://atlas.cern/Updates/Briefing/Advanced-Particle-Tagging

Introduction: The ATLAS Detector

* General purpose particle detector

* Inner detector (ID)in a2 T magnetic field
* Measures tracks of charged particles

* Silicon pixel detector with fine granularity for
resolving particle hits in dense jet cores

In this talk:

* Depositsin electromagnetic and hadronic
calorimeters used to form particle flow
objects (PFOs)

* Associated with tracks measured by ID

* Jets can be reconstructed from PFOs using
the anti-k, algorithm given a radius parameter
(ex: R=0.4 for small-R jets)

* Assume selected jets for the analyses
presented here are anti-k, R=0.4 unless
stated otherwise
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Contents

In this talk, the following recent QCD measurements made by ATLAS in 2024
will be presented:

* Measurement of jet track functions in ATLAS run 2 data (ATLAS-CONF-2024-012)

* Measurements of jet cross-section ratios in 13 TeV proton-proton
collisions with ATLAS (arxiv:2405.20206 [hep-ex])

* Measurement of the Lund jet plane in hadronic decays of top quarks and
W bosons with the ATLAS detector (arxiv:2407.10879 [hep-ex])

* Measurements of Lund subjet multiplicities in 13 TeV proton-proton
collisions with the ATLAS detector (arxiv:2402.13052 [hep-ex])
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Jet Track Functions

Track functions: charged
Pr
all

Pr

* Ratio of p; from all charged particles (tracks) to total p; of a jet: 7, =

Energy distribution of charged hadrons in jets

Universal and
 Cannotyet be calculated from first principles
* Must be measured

: . 2 . :
First moment (i.e. the average): (rq)~§ due to isospin symmetry

Higher moments encode information about the hadronization process

* Recall: nthmomentis (rqn)

Scale evolution of these values tests QCD beyond DGLAP paradigm

Insights into non-linear renormalization group (RG) evolution
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Results

* Cross-sections of r, shown for central (|n| < 2.5) and forward (|| > 2.5) regions

* General agreement between MC and data
* Underestimation at low r,and overestimation at high r,
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Extracted Moments

* Moment extractions use OmniFold: machine-learning based, data-driven
correction for binning artifacts
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Non-Linear RG Evolution

Extracted moments of r, expressed in
terms of cumulants of distribution, k,

Non-trivial RG flows theoretically
determine energy dependence of
relationships between cumulants

Unfolded data compared to next-to-
leading-logarithm (NLL) QCD
predictions of the RG flow

Theory predicts cumulants should
converge to a fixed point at higher py
* Top 2figures in agreement

* Bottom 2 figures - results flow in
opposite directions, need further study to
understand this discrepancy
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Jet Cross-Section Ratios




Jet Cross-Section Ratios

Measure cross-sections and their ratios in multijet events

Goalisto compare datato MC to study and improve QCD predictions

Separate observables chosen for sensitivity to:
» Jetenergy scale (JES) - tests accuracy of fixed-order matrix element predictions

* Angulardistribution of hadronic energy flow = indirectly tests our understanding of
vector boson scattering/fusion (VBS/VBF) and parton distribution functions (PDFs)

* Observables:
. * Hp, =prj1 + pr,jz 2 Sum of transverse momenta of the leading two jets
i
fg?'Eg/e . - Chosen as a proxy of the energy scale for the interaction

. pNincl 5 hcusive jet prdistribution
* Ay;; & Ayjj max
m;j &Mm;j max

Luca Colangeli January 15, 2025 11



Results: Cross-Sections

* No single MC prediction can describe the data across all bins

ATLAS & Data
Vs =13 TeV, 140 fb' -/ PH+Pythia
Sherpa
& PH+Herwig?

N,

N, 2 3 (10°)
N, = 4 (x109
Now 2 5 (x107)
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Results: Cross-Sections

* Significant difference between data and MC for large Ay;; and m;;

jets

N = 3 (x107)
+ Nge=4(x10%)

N = 5 (x107)
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® Data B Pythia

° ' 5= ’ : PH+Pythia % Sherpa Lund
e S u tS ° 32 T.3 Sherpa Herwig?
& PH+Herwig?

* Ratio of jet cross-sections of
different multiplicities

* R;, 2 3-jet to 2-jet cross section
ratio

* Sherpa agrees well with data

* Herwig underestimates 2-jet /s = 13 eV 140 fb”
. 0
cross-section Prg> 00 0e

* Next-to-next-to-leading-order
(NNLO) agrees well with data

* Next-to-leading order (NLO)

overestimates R;, SRR & TE LITEL e i

2x10° 3x10°

Hr, [GeV]
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The Lund Jet Plane in Top and W
Decays




The Lund Jet Plane (LJP)

* 2D JSS observable representing the kinematics
of parton showers and hadronization Angular separation of proto-jets Relative transverse

) . momentum of emission
* Jets arereconstructed using the CA algorithm

which combines particles into proto-jets based
on:

« Distance between particlesin (y, ¢) plane

* Radius parameter of the jet algorithm (ex: R=0.4
for small-R jets)

* LJPisconstructed by starting with the finished
jet and going through pairs of proto-jets in
previous steps of the shower

C-A clustering steps

* Lower-pl proto-jet (j)isthe emission

IN(RIAR)

* Higher-pl proto-jet (i) is the core
Variables In(R/AR) and In(1/z) plotted for each

j i emission from the core branch. Colored areas
pT < pT indicate size of phase space in which subsequent

emissions may appear.
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LJP Measurements in Top and W Jets

* Select anti-k; jets with R =1.0 (large-R jets) with Jet
p; > 350 GeV /
* Must contain full decay products of either: b-jet
1. Top quark (small-R, b-tagged)

2. Daughter W boson
https://en.wikipedia.org/wiki/Top_quark

* Selecting tt events where:
* Top quarks decay to W and b quark
* One Wdecays hadronically into jets
* Other Wgoes to electron or muon + neutrino

* Jetclassified as either ‘top jet’ or ‘W jet’ based
on decay topology

* Motivation:

* Improve MC generators in modelling decays of
heavy quarks and bosons

* Improve jet tagging algorithms W jet \
* Probe jet structure, evolution, hadronization, etc. (60 <m <100 GeV) Top jet

(m> 140 GeV, contains 2 b-jets)
Luca Colangeli January 15, 2025 17



https://en.wikipedia.org/wiki/Top_quark

Top jets
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* Measured density of emissions in the LJP fortop and W jets

o
o

* Bottom left region contains decays of high-pT top quarks and W

>

bosons h 0.2
* Fortop jets, peakis shifted to wider angles (larger AR) due to top mass e e TP
>W mass

In(R/AR)
* Average number of emissions perjet is:
« Topjets: 6.74 + 0.02 (stat.) + 0.13 (syst.)
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»
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Comparison with MC

d2
emissions

* Disagreement between
data and MC in large
regions of the spectra

* Sizeable differencesin
central region of LJP,
especially for W jets

* Large amount of
statistical uncertainty,
precision could improve
with larger dataset

W jets
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Lund Subjet Multiplicities




kt - ptermission . AR (pemission,pcore)

Lund Subjet Multiplicity

Transverse momentum of
emission relative to core

* Counts number of subjets in the clustering history

* Subjet must be above a minimum k;to be counted in Lund
multiplicity

* Niund - full countin the whole LJP

. NLPlrlirTgry —> only counting along the primary clustering (jet

core)

more

perturbative In(R/AR)

* Ex: ‘5’doesn’t pass the k; cut and isn’t counted .

* Motivation:

* Improve parton shower MC algorithms (PSMCs) by
incorporating double-soft splittings = emissions of 2 :
soft gluons or a quark-antiquark pair (beyond tree-level , i
in QCD) | | |

* Lund multiplicity will test forinclusion of double-soft

more

) p l. |tt| n gS non-perturbative
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L]

Pythia
Powheg+Pythia
Sherpa (Lund
Sherpa (2.2.5
Sherpa (2.2.11)

s =13 TeV, 140 fb™
k, = 50.0 GeV
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kr = 500Cev (IR

* Forsmaller k; cuts (< 2
GeV), Sherpa does better
at high multiplicity where
more non-perturbative
emissions are allowed
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Results

* Distribution of average Lund
multiplicity vs k; cut plotted

* Herwig agrees best

* Resummed analytic prediction
(NLO+NNDL+NP) in good
agreement with data in
perturbative region (k; > 2
GeV)
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Conclusion




Summary

* Several exciting new QCD measurements provide us insights into jets and
their formation and substructure

* These better our understanding and modelling of QCD in several ways

* Track functions of jets were measured = extrapolated statistical moments
allow for the study of non-linear renormalization group evolution

* Jetcross-section ratios measured to test MC methods

* Lund jet plane measured for the first time in tt events = help to improve
modelling of heavy quark/boson decays

* Lund multiplicities measured to improve parton shower modelling

Luca Colangeli January 15, 2025
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Thank you!
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Jet Cross-Section Ratios




Results: Cross-Sections

* No single MC prediction can describe the data across all bins

ATLAS Data u Pythia PH+Pythia
Vs=13 TeV, 140 fb"' 7 Sherpa lund s Sherpa = Herwig7
& PH+Herwig7

ATLAS ® Data = Pythia
Is=13TeV, 140 fb' = PH+Pythia ¥ Sherpa Lund
Sherpa % Herwig?
B PH+Herwig7

N

jets <2
Ny = 3 (x107)

N = 4 (x107)

70 10° 2x10°
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Results: Cross-Sections

* Significant difference between data and MC for large Ay;; and m;;

ATLAS Data m Pythia PH+Pythia
Vs=13TeV, 140fb™" v Sherpalund 4 Sherpa  Herwig7
X PH+Herwig7
Data B Pythia
PH+Pythia vV Sherpa Lund
Sherpa Herwig7
X PH+Herwig7
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Ny = 4 (x107)
N, = 5 (x107)

1000 2000 3000 4000 5000 6000 7000 ‘ 2000 3000 4000 5000 6000 7000
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Results: Cross-Section Ratios

. EfllfF'ythia - Z::;?a Lund
P, , > 60 GeV Sherpa Herwig?
& PH+Herwig?
* Ratios of jet cross- . gie—_
sections of different SR L

multiplicities

* Ex: Ry, 2 4-jet to 2-jet
cross section ratio

* Sherpa agrees well

Wl th d ata 3 A_TLAS ® Data B Pythia 1 ® Data ® Pythia
o 130%\{;;1 it PH+Pythia v Sherpa Lund 0.7F /s =13TeV, 140 fo” PH+Pythia v Sherpa Lund
. e Sherns o . )
° H erwi g Prs™ : Sherpa . Herwig? 0.61 P, >60 GeV Sherae Horwig?
' S Erntienmigh @ PH+Herwig7
underestimates 2-jet
cross-section

LT EErr e ———
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