Towards automatizing Higgs decays in BSM models at one-loop in the decoupling renormalization scheme

#### Jonas Lang

In Collaboration with W. Kotlarski, D.Stöckinger, J. Wünsche

#### 14.01.2025



NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK



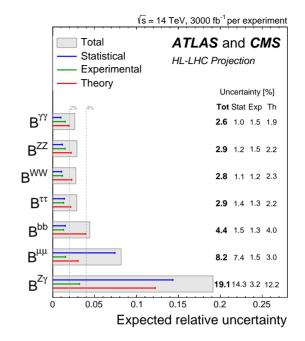
Work supported by the National Science Center (Poland) grant 2022/47/D/ST2/03087

# Why to study Higgs decays?

1. Measurements of the Higgs-sector become more precise

2. Extensions of the Higgs-sector solve a large variety of problems

 $\rightarrow$  from flavor problems to baryogenesis



There is great potential in tightly constraining BSM models through the Higgs-sector:  $\rightarrow$  increasing experimental precision must be matched by theory  $\rightarrow$  a large variety of models must be explored

Cepeda et. al.; Higgs Physics at the HL-LHC and HE-LHC; 1902.00134

# How to organize higher order corrections?

Observables are connected to Greens functions to the Path integral

$$\langle T(\mathcal{O}(x_a)\mathcal{O}(x_b)\dots)\rangle \propto \int \mathcal{D}[\Phi(x)]e^{iS[\Phi(x),\alpha]}\mathcal{O}(x_a)\mathcal{O}(x_b)\dots$$

Couplings need to satisfy  $\alpha \sim O(1)$  to evaluate this expression  $\rightarrow$  perturbative expansion of the exponential

Higher order terms lead to an improvement of the prediction for observables  $\rightarrow$  organized in terms of fixed loop expansion

The loop-corrections are not finite and need to be regularized and renormalized to get a meaningful prediction for observables

# How to automatize these calculations?

By now the formal calculations are standard and many tools exist to calculate Feynman diagrams and observables

- → SARAH, FeynArts, FormCalc, LoopTools
- → HDECAY, 2HDECAY, FeynHiggs,...

A. Djouadi, J. Kalinowski, M. Spira; hep-ph/9704448 M. Krause, M. Mühlleitner, M. Spira; 1810.00768

Problem: Many of these Tools are very model specific

Develop FlexibleSUSY and the extention FlexibleDecay to extend the available models for automatized high-precision calculation of model properties

FlexibleSUSY is a spectrum-generator generator:

- $\rightarrow$  it generates codes for a large models
- $\rightarrow$  state-of-the-art Higgs mass prediction

FlexibleDecay adds the ability to calculate Higgs decays:

- $\rightarrow$  higher order SM effects are taken into account
- $\rightarrow$  the BSM effects are renormalized in the decoupling renormalization scheme

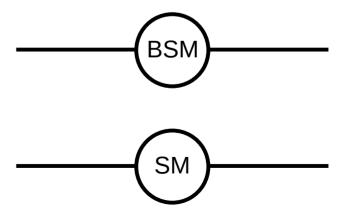
# Why to use the decoupling renormalization scheme?

Regularization and Renormalization are a standard procedure as well  $\rightarrow$  many schemes available like OS,  $\overline{\text{MS}}$ ,...

The most common scheme ( $\overline{MS}$ ) suffers from large contributions due to the presence of the unknown BSM part

- $\rightarrow$  introduces large uncertainties
- $\rightarrow$  makes the whole calculation problematic

Idea: We separate the BSM effects from SM effects and hide them in SM renormalization constants → BSM contributions drop out in the decoupling limit



# How to apply the decoupling scheme, theoretically?

We separate parameters in **SM-like** and BSM parameters

Renormalization conditions for SM-like parameters:

 $P_{\rm BSM}^{\rm dec} = P_{\rm SM}^{\overline{MS}}$ 

The bare parameter of the BSM theory can be written in decoupling-and on-shell scheme

$$P_0 = P_{\rm BSM}^{\rm dec} + \delta P_{\rm BSM}^{\rm dec} \stackrel{!}{=} P_{\rm BSM}^{\rm OS} + \delta P_{\rm BSM}^{\rm OS}$$

Or in terms of renormalization constants

 $\delta P_{\rm BSM}^{\rm dec} = \delta P_{SM}^{\overline{MS}} + \delta P_{\rm BSM}^{\rm OS} - \delta P_{\rm SM}^{\rm OS}$ 

The corresponding definition exists also in the SM

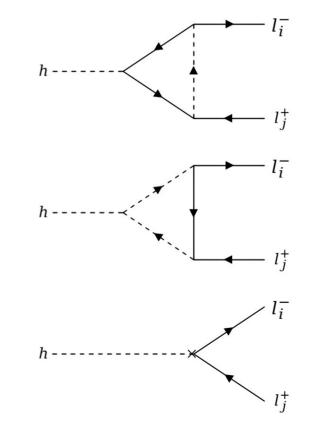
$$P_0 = P_{\rm SM}^{\overline{\rm MS}} + \delta P_{\rm SM}^{\overline{\rm MS}} \stackrel{!}{=} P_{\rm SM}^{\rm OS} + \delta P_{\rm SM}^{\rm OS}$$

# How to apply the decoupling scheme, practically?

Explore the  $S_1$ -Leptoquark model with  $\phi$  the Leptoquark field transforming as  $\left({}^{3,1,-\frac{1}{3}}\right)$ 

$$\mathcal{L}_{Y\phi} = Y_{ij}^{LL} \left( Q_{i}^{C} i \sigma^{2} L_{j} \right) \phi^{\dagger} + Y_{ij}^{RR} q_{u}^{C} l_{j} \phi^{\dagger} + \text{h.c.}$$
$$\mathcal{L}_{H\phi} = -g_{H\phi} (H^{\dagger} H) \phi^{\dagger} \phi$$

To properly predict decay properties in the decoupling scheme at one-loop we require the renormalization constants:  $\delta m_{i}^{l}, \, \delta Z_{ij}^{L}, \, \delta Z_{ij}^{R}, \, \delta Z_{H} \text{ and } \delta Z_{v}$ 



#### How to calculate the triangle diagrams?

$$B_{0;\mu;\mu\nu} = \frac{\tilde{\mu}^{4-D}}{i\pi^{\frac{D}{2}}} \int d^D k \frac{1; k_\mu; k_\mu k_\nu}{(k^2 - m_1^2)((k+k_1)^2 - m_2^2)}$$
$$C_{0;\mu;\mu\nu} = \frac{\tilde{\mu}^{4-D}}{i\pi^{\frac{D}{2}}} \int d^D k \frac{1; k_\mu; k_\mu k_\nu}{(k^2 - m_1^2)((k+k_1)^2 - m_2^2)((k+k_2)^2 - m_3^2)}$$

We can use the tensor structure and expand:

$$B^{\mu} = k_{1}^{\mu}B_{1} \qquad C^{\mu} = k_{1}^{\mu}C_{1} + k_{2}^{\mu}C_{2}$$

$$B^{\mu\nu} = \eta^{\mu\nu}B_{00} + k_{1}^{\mu}k_{1}^{\nu}B_{11} \qquad C^{\mu\nu} = \eta^{\mu\nu}C_{00} + (k_{1}^{\mu}k_{2}^{\nu} + k_{2}^{\mu}k_{1}^{\nu})C_{12} + k_{1}^{\mu}k_{1}^{\nu}C_{11} + k_{2}^{\mu}k_{2}^{\nu}C_{22}$$

$$\frac{1}{2} \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) \left(m_{1}^{2}\right) = \int_{0}^{1} \left(m_{1}^{2}\right) \left($$

$$B_0(p, m_1, m_2) = \frac{1}{\epsilon} - \log\left(\frac{m_1^2}{\mu^2}\right) + 1 - \int_0^1 dx \log\left(1 + \frac{x}{x}\alpha_1 - \overline{x}\beta_1\right) \qquad \alpha_1 = \frac{m_2^2}{m_1^2}, \beta_1 = \frac{p^2}{m_1^2}$$

From the triangle diagrams we get BSM contributions to form-factors

$$F_{Lij}^{1} = \frac{3m_{u_{k}}}{16\pi^{2}v} \left\{ \left[ B_{0}\left(m_{i}^{l}, m_{\phi}, m_{u_{k}}\right) + 2m_{u_{k}}^{2}C_{0}(a) + m_{\mu}^{2}C_{1}(a) + m_{H}^{2}C_{0}(a) \right] (Y^{RR\dagger})_{ik}Y_{kj}^{LL} + \cdots \right\}$$

 $F_{Lij}^{2} = \frac{3g_{H\phi}v}{16\pi^{2}} \left\{ m_{\mu} [C_{0}(b) + C_{1}(b) + C_{2}(b)] (Y^{LL\dagger})_{ik} Y_{kj}^{LL} - m_{\mu}C_{2}(b) (Y^{RR\dagger})_{ik} Y_{kj}^{RR} + m_{u_{k}}C_{0}(b) (Y^{LL\dagger})_{ik} Y_{kj}^{RR} \right\}$ 



Due to dimensional regularization

 $\rightarrow$  will be taken care of by choosing any appropriate renormalization scheme

Due to a large Leptoquark mass

 $\rightarrow$  will be handled by using the decoupling renormalization scheme

### How to calculate the renormalization constants?

Generally the self-energies take the form

$$\Pi(p^2) = \Pi^{\text{BSM}}(p^2) + \Pi^{\text{SM}}(p^2) \longrightarrow \delta P_{\text{BSM}}^{\text{dec}} = \delta P_{SM}^{\overline{MS}} + \delta P_{\text{BSM}}^{\text{OS}} - \delta P_{\text{SM}}^{\text{OS}}$$

Beauty of this model: The SM contributions in the OS difference cancel, leaving only the BSM contributions

$$\delta Z_{ii}^{\text{L,dec}} = \delta Z_{ii}^{L,\overline{MS}} + \frac{3}{16\pi^2} \left\{ (Y^{LL\dagger})_{ik} Y_{ki}^{LL} B_1(m_i^l, m_{u_k}, m_{\phi}) + \dots \right\}$$
  

$$\delta Z_{ii}^{\text{l,dec}} = \delta Z_{ii}^{R,\overline{MS}} + \frac{3}{16\pi^2} \left\{ (Y^{RR\dagger})_{ik} Y_{ki}^{RR} B_1(m_i^l, m_{u_k}, m_{\phi}) + \dots \right\}$$
  

$$\delta Z_{ii}^{\text{m,dec}} = \delta Z_{ii}^{m,\overline{MS}} + \frac{3m_{u_k}}{32\pi^2} b_{ij}^k B_0(p, m_{u_k}, m_{\phi}) - \frac{3}{32\pi^2} a_{ii}^k B_1(m_i^l, m_{u_k}, m_{\phi})$$

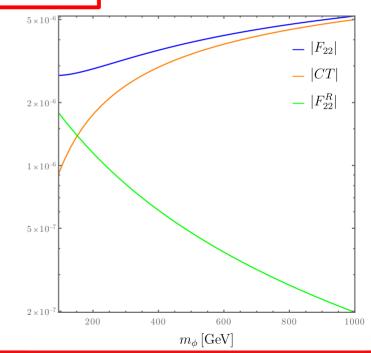
h - - - - h $u_k$  $a_{ij}^k = (Y^{LL^\dagger}Y^{LL} + Y^{RR^\dagger}Y^{RR})_{ij}$ 

 $b_{ij}^k = (Y^{LL^{\dagger}}Y^{RR} + Y^{RR^{\dagger}}Y^{LL})_{ij}$ 

$$h = -\frac{m_i^l}{2v} \left( \delta Z_{Lii}^{\overline{MS}} + \delta Z_{Rii}^{\overline{MS}} \right) - \frac{m_i^l}{2} \delta Z_{mii}^{\overline{MS}} - \frac{3m_{u_k}}{16\pi^2 v} b_{ii}^k B_0(m_i^l, m_{u_k}, m_{\phi}) + \dots$$

The counter term removes all divergencies in the amplitude:

- $\rightarrow$  we get meaningful observables
- $\rightarrow$  Amplitudes show the decoupling behavior
- $\rightarrow$  delicate corrections are not spoiled by the BSM contributions



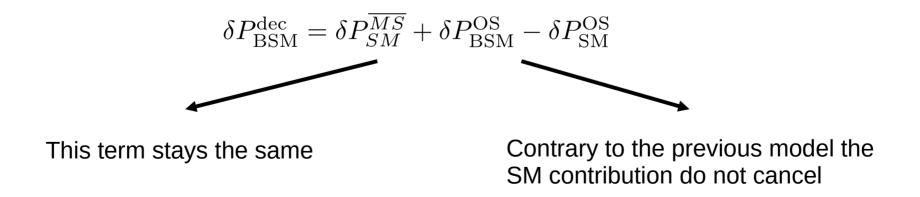
Jonas Lang (NCBJ)

# What about more complicated models?

We analyzed the HSESM and 2HDM:

 $\rightarrow$  the approach stays the same

 $\rightarrow$  due to the different structure to the SM the decoupling scheme renormalization constants take a much more difficult form

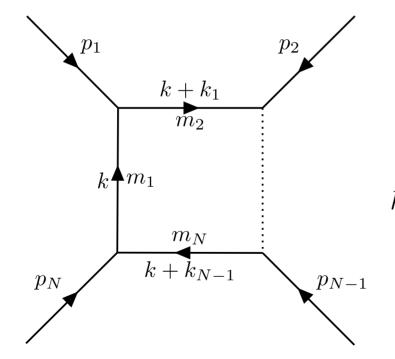


# Summary & Outlook

- Higgs decays are a important to constrain and test BSM models
- FlexibleSUSY provides a framework to analyze many models
- The decoupling renormalization scheme does not spoil higher order corrections with large BSM contributions
- The presented renormalization scheme must be implemented in FlexibleDecay
- Compare with analytic calculation and other tools
- Use FlexibleDecay for phenomenological explorations of Higgs properties

## Backup: Momentum conventions

The momentum conventions along the calculations are taken over from LoopTools.

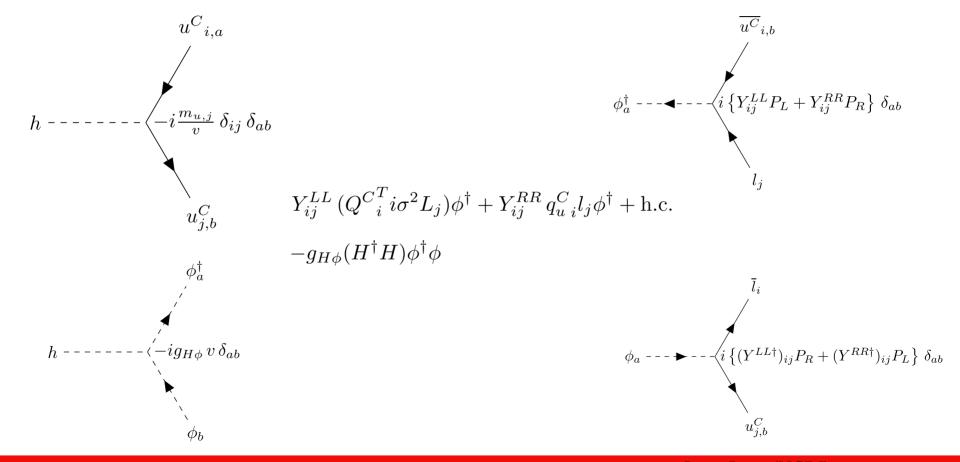


From Momentum conservation we get:  $k_1 = p_1$   $k_2 = p_1 + p_2$  $k_{N-1} = \sum_{i=1}^{N-1} p_i$ 

T. Hahn; LoopTools 2.15 User's Guide

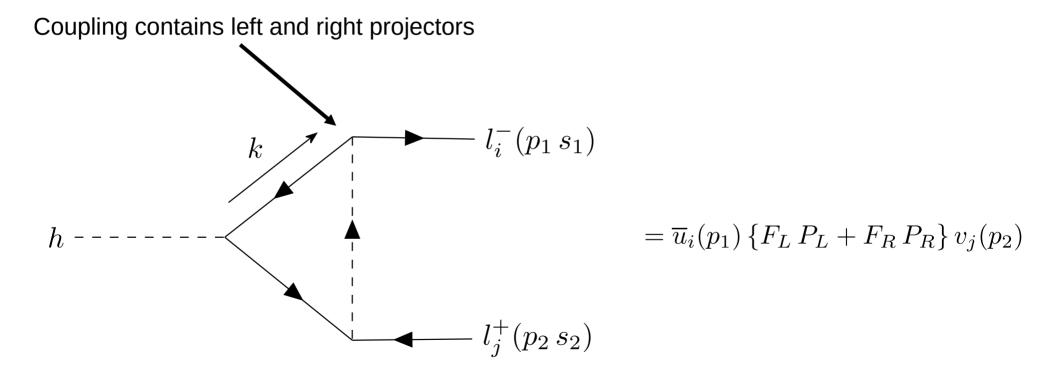
#### Jonas Lang (NCBJ)

#### Backup: Feynman rules for the leptoquark model



Jonas Lang (NCBJ)

# Backup: Structure of triangle diagrams



## Backup: Renormalization of the SM

 $n^2$  –

 $e_0 = Z_e e$  $m_{W0}^2 = Z_{mW} m_W^2$  $m_{Z0}^2 = Z_{mZ} m_Z^2$  $m_{H0}^2 = Z_{mH} m_H^2$  $m_{f0,ij} = \tilde{Z}_{mf,ik} m_{f,kj}$  $\delta e = \delta Z_e e$  $\delta m_W^2 = \delta Z_{mW} m_W^2$  $\delta m_Z^2 = \delta Z_{mZ} m_Z^2$  $\delta m_H^2 = \delta Z_{mH} m_H^2$  $\delta m_{f,ij} = \delta \tilde{Z}_{mf,ik} m_{f,kj}$  Inverse Propagators for the Higgs and Fermions are

$$\hat{\Gamma}^{H}(p) = i \left( p^{2} - m_{H}^{2} \right) + i \hat{\Pi}_{H}(p^{2})$$
$$\hat{\Gamma}^{F}_{ij}(p) = i \left( p - m_{i}^{f} \right) \delta_{ij} + i \left\{ p \left[ \hat{\Sigma}^{L}_{1ij}(p^{2}) P_{L} + \hat{\Sigma}^{R}_{1ij}(p^{2}) P_{R} \right] + \hat{\Sigma}^{L}_{2ij}(p^{2}) P_{L} + \hat{\Sigma}^{R}_{2ij}(p^{2}) P_{R} \right\}$$

And the corresponding renormalization conditions become

$$\begin{aligned} \hat{\Pi}_{H}(p^{2} = m_{H}^{2}) &= 0 & \frac{\partial \Pi_{H}(p^{2})}{\partial p^{2}} \bigg|_{p^{2} = m_{H}^{2}} = 0 \\ \hat{\Sigma}_{ij}(p)u_{j}(p)\bigg|_{p^{2} = m_{j}^{l2}} &= 0 & u_{i}(p)\hat{\Sigma}_{ij}(p)\bigg|_{p^{2} = m_{i}^{l2}} = 0 \\ \frac{m_{i}^{l}}{m_{i}^{l2}}\hat{\Sigma}_{ii}(p)u_{i}(p)\bigg|_{p^{2} = m_{i}^{l2}} &= 0 & u_{i}(p)\hat{\Sigma}_{ii}(p)\frac{p + m_{i}^{l}}{p^{2} - m_{i}^{l2}}\bigg|_{p^{2} = m_{i}^{l2}} = 0 \end{aligned}$$

# Backup: Higgs-and Fermion renormalization constants

Applying the renormalization conditions yields

$$\begin{split} \delta Z_{H} &= -\frac{\partial \Pi_{H}^{\text{BSM}}(p^{2})}{\partial p^{2}} \Big|_{p^{2} = m_{H}^{2}} \\ \delta Z_{mH} &= \frac{\Pi_{H}^{\text{BSM}}(m_{H}^{2})}{m_{H}^{2}} \\ \delta Z_{ii}^{L} &= -\Sigma_{1ii}^{L}(m_{i}^{l2}) - m_{i}^{l} \frac{\partial}{\partial p^{2}} (m_{i}^{l} (\Sigma_{1ii}^{L}(p^{2}) + \Sigma_{1ii}^{R}(p^{2})) + \Sigma_{2ii}^{L}(p^{2}) + \Sigma_{2ii}^{R}(p^{2})) \\ \delta Z_{ii}^{l} &= -\Sigma_{1ii}^{R}(m_{i}^{l2}) - m_{i}^{l} \frac{\partial}{\partial p^{2}} (m_{i}^{l} (\Sigma_{1ii}^{L}(p^{2}) + \Sigma_{1ii}^{R}(p^{2})) + \Sigma_{2ii}^{L}(p^{2}) + \Sigma_{2ii}^{R}(p^{2})) \\ \delta Z_{ii}^{m} &= \frac{1}{2} (\Sigma_{1ii}^{L}(m_{i}^{l2}) + \Sigma_{1ii}^{R}(m_{i}^{l2}) + \Sigma_{2ii}^{L}(m_{i}^{l2}) + \Sigma_{2ii}^{R}(m_{i}^{l2})) \end{split}$$