Tau-pair invariant mass estimation using MLE and collinear approximation

Wiktor Matyszkiewicz

University of Warsaw

16th January 2025

 $2Q$

Higgs mass reconstruction

Information we have:

- $p_{1,2}^{\sf vis}$ four-momentum of visible products
- $p_{x}^{\rm rec}, p_{y}^{\rm rec}$ reconstructed Missing Transverse Energy
- \bullet V_{cov} covariance matrix of reconstructed [ME](#page-0-0)[T](#page-2-0)

Wiktor Matyszkiewicz (UW) and the fast of [fastMTT](#page-0-0) 16th January 2025 2/13

• Matrix element techniques (CMS) arXiv:1603.05910 [hep-ex]

• Missing Mass Calculator (ATLAS) arXiv:1012.4686 [hep-ex]

fastMTT

fastMTT algorithm reconstruct di-tau invariant mass with good mass resolution and high computing performance (e.g. \sim 100 times faster then CSVfit).

- **It estimates likelihood of invariant mass of taons by Matrix Element** Method (in the same fashion as CSVfit).
- Then it uses Collinear Approximation to simplify most of the terms, that is needed to calculate.
- Using that, the result is calculated analytically.
- Finally, a scan over the space of possible masses is performed (grid search) and the most probable one is chosen.

Maximum Likelihood Estimation

We maximize likelihood function to obtain the most probable parameter value for given data:

 \hat{m} = arg max $\mathcal{L}(m|$ data)

Wiktor Matyszkiewicz (UW) [fastMTT](#page-0-0) 16th January 2025 5/13

Matrix Element Method

We calculate likelihood as:

$$
\mathcal{L}(m|\text{data}) = \frac{32\pi^4}{s} \int \prod_j^n \frac{d^3p_j}{(2\pi)^3 2E_j} \prod_{i=1}^2 |\text{BW}_{\tau}^{(i)}|^2
$$

$$
|\text{M}_{\tau\to\ldots}^{(i)}|^2 \text{TF}(\text{p}_x^{\text{rec}}, \text{p}_y^{\text{rec}} | \text{p}_x^{\text{true}}, \text{p}_y^{\text{true}}) \frac{1}{m_{\tau\tau}^{\kappa}}
$$

 $\mathsf{BW}^{(i)}_{\tau}$ – taon Breit-Wigner distribution function

 $\mathsf{M}^{(i)}_{\tau\rightarrow ...}$ – matrix element for taon decay

 $\mathsf{TF}(\not\! p_{\sf x}^{\sf rec}$ $x^{\text{rec}}, \cancel{p}_y^{\text{rec}}$ rec $|\cancel{p}_{\chi}^{\text{true}}$ $x^{\text{true}}, \cancel{p}_y^{\text{true}}$ $y^{\rm true}_{y}$) – transfer function between true and reconstructed MET

 $\frac{1}{m_{\tau\tau}^{\kappa}}$ – bayesian regularization term (accelerates algorithm convergence)

Wiktor Matyszkiewicz (UW) and the fast of fast MTT 16th January 2025 6/13

 QQQ

- We usually introduce Gotfried-Jackson angle $\theta_{\rm G1}$ to parametrize angle between visible products and taons.
- In the collinear approximation we assume that $\theta_{\rm GI} = 0$.
- It is well justified with the energies of Z^0 or H, much larger than m_{τ} .

fastMTT algorithm

$$
\mathcal{L}(m|\text{data}) = \frac{32\pi^4}{s} \text{TF}(\mathbf{p}_x^{\text{rec}}, \mathbf{p}_y^{\text{rec}} | \mathbf{p}_x^{\text{true}}, \mathbf{p}_y^{\text{true}}) \frac{1}{m_{\tau\tau}^{\kappa}} \cdot I
$$

$$
I = \int \prod_j^n \frac{d^3 p_j}{(2\pi)^3 2E_j} \prod_{i=1}^2 |\text{BW}_{\tau}^{(i)}|^2 |\mathbf{M}_{\tau\to\ldots}^{(i)}|^2
$$

Using Collinear Approximation:

$$
I = \int_{x_{1,min}}^{1} dx_{1} \int_{x_{2,min}}^{1} dx_{2} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{2\pi} d\phi_{2} \int_{0}^{1-x_{1}m_{\tau}^{2}} dm_{\nu\nu}^{2} \delta\left(m_{\tau\tau} - \frac{m_{vis}}{\sqrt{x_{1}x_{2}}}\right)
$$

= $4\pi^{2} m_{\tau}^{2} \frac{m_{vis}^{2}}{m_{\tau\tau}^{3}} \left[\log(x_{2,max}) - \log(x_{2,min}) + \left(\frac{m_{vis}}{m_{\tau\tau}}\right)^{2} \left(\frac{1}{x_{2,max}} - \frac{1}{x_{2,min}}\right) \right]$

4 ロ ▶ 4 冊

. p

重

 299

We tested the algorithm using:

- MC samples from Pythia 8.3 with CUEP8M1 tune and different Higgs masses
- Delphes 3.5.0 with standard CMS card (and small adjustments)
- No pile-up
- MET covariance matrix calculated by comparing simulated and reconstructed MET values
- Different Higgs masses

É

 299

イロト イ部 トイモ トイモト

Performance

Wiktor Matyszkiewicz (UW) and the fast must be fast MTT and the fast of the fast MTT distribution of the fast MTT

重

 299

Computing Performance


```
= np.arange(1, nGridPoints) * gridFactorX2 = np.arange(1, nGridPoints) * gridFactor# Cartesian product
pairs = np.colum \stackrel{\text{stack}}{(np-repeat(X1, len(X2))},np.title(X2, len(X1))))lh = self.myLikelihood.value(pairs)
minimum = np.arange(1h, axis=1)
```


◂**◻▸ ◂◚▸**

Performance Comparison: Python vs C++

Þ

 QQ

- **•** fastMTT is algorithm that reconstructs invariant mass of system with two taons.
- It is faster then other algorithms used by CMS.
- We plan to develop it further (event by event uncertainty, Z/H mass constraints for better momentum estimation).
- \bullet We plan to document and publish the algorithm (paper $+$ code) for easy use outside CMS (ATLAS, FCC, etc.).

Already used by CMS e.g. in: HIG-22-004 or in PLB 857 (2024) 138964