Tau-pair invariant mass estimation using MLE and collinear approximation

Wiktor Matyszkiewicz

University of Warsaw

16th January 2025

Higgs mass reconstruction

Information we have:

- $p_{1,2}^{vis}$ four-momentum of visible products
- p_x^{rec} , p_y^{rec} reconstructed Missing Transverse Energy

Wiktor Matyszkiewicz (UW)

 Matrix element techniques (CMS)
 arXiv:1603.05910 [hep-ex]

 Missing Mass Calculator (ATLAS) arXiv:1012.4686 [hep-ex]

fastMTT

fastMTT algorithm reconstruct di-tau invariant mass with good mass resolution and high computing performance (e.g. \sim 100 times faster then CSVfit).

- It estimates likelihood of invariant mass of taons by Matrix Element Method (in the same fashion as CSVfit).
- Then it uses Collinear Approximation to simplify most of the terms, that is needed to calculate.
- Using that, the result is calculated analytically.
- Finally, a scan over the space of possible masses is performed (grid search) and the most probable one is chosen.

Maximum Likelihood Estimation

We maximize likelihood function to obtain the most probable parameter value for given data:

 $\hat{m} = \arg \max \mathcal{L}(m | \mathsf{data})$

Wiktor Matyszkiewicz (UW)

16th January 2025

Matrix Element Method

We calculate likelihood as:

$$\begin{split} \mathcal{L}(m|\mathsf{data}) &= \frac{32\pi^4}{s} \int \prod_j^n \frac{d^3 p_j}{(2\pi)^3 2E_j} \prod_{i=1}^2 |\mathsf{BW}_{\tau}^{(i)}|^2 \\ |\mathsf{M}_{\tau \to \dots}^{(i)}|^2 \mathsf{TF}(p_x^{\mathsf{rec}}, p_y^{\mathsf{rec}} | p_x^{\mathsf{true}}, p_y^{\mathsf{true}}) \frac{1}{m_{\tau\tau}^{\kappa}} \end{split}$$

 $\mathsf{BW}_{\tau}^{(i)}$ – taon Breit-Wigner distribution function

 $\mathsf{M}_{ au
ightarrow \dots}^{(i)}$ – matrix element for taon decay

 $\mathsf{TF}(p_x^{\mathsf{rec}},p_y^{\mathsf{rec}}|p_x^{\mathsf{true}},p_y^{\mathsf{true}}) - \mathsf{transfer function between true and} \\ \mathsf{reconstructed MET}$

 $\frac{1}{m_{\tau\tau}^{\kappa}}$ – bayesian regularization term (accelerates algorithm convergence)

Wiktor Matyszkiewicz (UW)

- We usually introduce Gotfried-Jackson angle θ_{GJ} to parametrize angle between visible products and taons.
- In the collinear approximation we assume that $\theta_{GJ} = 0$.
- It is well justified with the energies of Z^0 or H, much larger than m_{τ} .

fastMTT algorithm

$$\begin{split} \mathcal{L}(m|\mathsf{data}) &= \frac{32\pi^4}{s} \mathsf{TF}(p_x^{\mathsf{rec}}, p_y^{\mathsf{rec}} | p_x^{\mathsf{true}}, p_y^{\mathsf{true}}) \frac{1}{m_{\tau\tau}^\kappa} \cdot I \\ I &= \int \prod_j^n \frac{d^3 p_j}{(2\pi)^3 2E_j} \prod_{i=1}^2 |\mathsf{BW}_{\tau}^{(i)}|^2 |\mathsf{M}_{\tau \to \dots}^{(i)}|^2 \end{split}$$

Using Collinear Approximation:

$$\begin{split} I &= \int_{x_{1,\min}}^{1} dx_{1} \int_{x_{2,\min}}^{1} dx_{2} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{2\pi} d\phi_{2} \int_{0}^{1-x_{1}m_{\tau}^{2}} dm_{\nu\nu}^{2} \delta\left(m_{\tau\tau} - \frac{m_{\text{vis}}}{\sqrt{x_{1}x_{2}}}\right) \\ &= 4\pi^{2} m_{\tau}^{2} \frac{m_{\text{vis}}^{2}}{m_{\tau\tau}^{3}} \left[\log(x_{2,\max}) - \log(x_{2,\min}) + \left(\frac{m_{\text{vis}}}{m_{\tau\tau}}\right)^{2} \left(\frac{1}{x_{2,\max}} - \frac{1}{x_{2,\min}}\right) \right] \end{split}$$

문 문 문

We tested the algorithm using:

- MC samples from Pythia 8.3 with CUEP8M1 tune and different Higgs masses
- Delphes 3.5.0 with standard CMS card (and small adjustments)
- No pile-up
- MET covariance matrix calculated by comparing simulated and reconstructed MET values
- Different Higgs masses

æ

< □ > < □ > < □ > < □ > < □ >

Performance

Wiktor Matyszkiewicz (UW)

16th January 2025

æ

Computing Performance

<pre>for(int iX2 = 1; iX2<ngridpoints;++ix2){< pre=""></ngridpoints;++ix2){<></pre>	
<pre>x[1] = iX2*gridFactor;</pre>	
<pre>for(int iX1 = 1; iX1<ngridpoints;++ix1){< pre=""></ngridpoints;++ix1){<></pre>	
<pre>x[0] = iX1*gridFactor;</pre>	
<pre>lh = myLikelihood.value(x);</pre>	
if(lh <bestlh){< td=""><td></td></bestlh){<>	
<pre>bestLH = lh;</pre>	

Image: A matrix

Performance Comparison: Python vs C++

- fastMTT is algorithm that reconstructs invariant mass of system with two taons.
- It is faster then other algorithms used by CMS.
- We plan to develop it further (event by event uncertainty, Z/H mass constraints for better momentum estimation).
- We plan to document and publish the algorithm (paper + code) for easy use outside CMS (ATLAS, FCC, etc.).

Already used by CMS e.g. in: HIG-22-004 or in PLB 857 (2024) 138964