Search for Lepton Flavor Violating $B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$ Decays at Belle

Junaid Ur Rehman, Belle/Belle II Collaboration

16/01/2025

Outline

- 1. Motivation
- 2. Experimental setup
- 3. Analysis approach
 - a. Signal side reconstruction
 - b. Tag side reconstruction
- 4. Preliminary selections and BDT
- 5. Control mode validation
- 6. Summary and outlook

Motivation

• Lepton Flavor is an accidental symmetry in the Standard Model (SM) Lagrangian.

• In the SM, $B \rightarrow K\tau\ell$, $(\ell = e,\mu)$ decays are not allowed because of the lepton flavor violation.

• Third generational coupling and τ presence are sensitive to new physics (NP). Some NP models predict BR in the range of 10^{-5} - $10^{-7}(1)$.

1. S. Watanuki et al., PhysRevLett.130.261802

Current upper limits (1)

 $B(B^+ \to K^+ \tau^+ \mu^-) < 0.59 \times 10^{-5}$ $B(B^+ \to K^+ \tau^+ e^-) < 1.51 \times 10^{-5}$ $B(B^+ \to K^+ \tau^- \mu^+) < 2.45 \times 10^{-5}$ $B(B^+ \to K^+ \tau^- e^+) < 1.53 \times 10^{-5}$

Experimental setup

• Based on an asymmetric leptons collider where most of the data was collected at Y(4S).

 $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

• One *B* is named as signal $B(B_{sig})$ and the other as tag $B(B_{tag})$.

• It operated from 1999-2010 and has collected 1 ab⁻¹ data.

Analysis approach

• Complete decay has the following form:

 $e^+e^- \to Y(4S) \to B^+B^ (B_{sig}) \qquad B^+ \to K^+\tau^-\mu^+$ $\tau^- \to \pi^-\nu_{\tau} \qquad \text{(missing neutrino)}$ $(B_{tag}) \qquad B^- \to X\ell^-\nu_{\ell} \qquad \text{(semileptonic tag)}$

- First we assume τ is missing so the p_{Bsig} can be constrained on the cone around $p_{K\mu}$, then we consider the $\tau \rightarrow \pi v_{\tau}$ decay and constrain the p_{Bsig} on the cone around $p_{K\pi\mu}$ (missing neutrino).
- Intersection of these two cones, provide us the p_{Bsig} momentum with two fold ambiguity (p_{B1}, p_{B2}) .

Note: In this presentation only $B^+ \rightarrow K^+ \tau^- \mu^+$ mode is discussed and same method will be used for other three decay modes.

$$B^+ \to K^+ \tau^+ \mu^-$$

$$B^+ \to K^+ \tau^+ e^-$$

$$B^+ \to K^+ \tau^- e^+$$

Tag side reconstruction

• Complete decay is following

$$B^{+} \to K^{+} \tau^{-} \mu^{+}$$
$$\tau^{-} \to \pi^{-} \nu_{\tau}$$
$$B^{-} \to X \ell^{-} \nu_{\ell}$$

• Based on this reconstruction, a variable $\Delta \cos\theta$ is defined as

$$\Delta \cos\theta = \min |\cos\theta_{[1,2]} + \cos\theta_{tag}|$$

• It contains information from both signal and tag side.

Hadronic tagging is also used with the encouraging results (2).

Preliminary selections

- To reduce the background, we will make some preliminary selections.
- $\sin \phi < 1.0$ rejects majority background on the signal side.
- Semi-leptonic *B* & *D* decays can mimic our signal so to reject them we use $m_{K\pi} > 1.91$ GeV.
- After some more preliminary selections.

 $\boldsymbol{\epsilon}_{sig} = 3.9 \times 10^{-3} \;, \; \boldsymbol{\epsilon}_{bg} = 1.0 \times 10^{-6}$

Sample size:

1.0 M Dedicated $B^+ \rightarrow K^+ \tau^- (\rightarrow \pi^- \nu_{\tau}) \mu^+$ MC. 3.0xBelle data (norm. to Belle data) for generic MC.

Boosted Decision Trees (BDT) approach

• Signal sample: Training (70%) and testing (30%) is done on the dedicated 1.0 M, $B \rightarrow K\tau(\rightarrow \pi v_{\tau})\mu$ sample.

• **Background sample:** 10×Belle data (7×training, 3×testing) of generic MC is used for B^+B^- and $B^0 \overline{B}^0$.

• Application sample: Application of BDT is performed on the dedicated 8.9 M, $B \rightarrow K\tau(\rightarrow all)\mu$ sample and 1×Belle data for background.

• N_{sig} and N_{bg} are estimated for Belle luminosity.

BDT optimization

• To optimize the BDT score cut, Punzi figure of merit is used which is defined

Final BDT score

• For BDT> 0.13 and corresponding to BF of 5×10^{-5} .

Cross feeds

- We expect some cross feeds from different τ decays.
- Max. cross feed is from the $\tau \rightarrow \rho v_{\tau}$ channel.

0.8

BDT

Control modes validation

• We are using the following decays as our control channel modes.

 $B^{+} \to J/\psi K^{+} \qquad (BF = 1.02 \times 10^{-3}) , \qquad B^{+} \to D^{0} \pi^{+} \qquad (BF = 4.61 \times 10^{-3})$ $J/\psi \to \mu^{+}\mu^{-} \qquad (BF = 5.9 \times 10^{-2}) \qquad D^{0} \to K^{+}\pi^{-} \qquad (BF = 3.9 \times 10^{-2})$

• Topology of these decays are similar to our signal decay.

• We assume that one particle (μ,π) is missing, so that they can replicate our signal decay reconstruction.

Sample size: Complete Belle data. 3.0xBelle data (norm. to Belle data) for generic MC.

$\Delta \cos\theta$ for control modes

- After our all selections on the control modes, we have the distributions of $\Delta \cos\theta$.
- Reasonable agreement of shape between data and MC.

Summary and outlook

• We have developed new tools for studying the $B \rightarrow K\tau \ell$ decays (with sensitivity ~ 10⁻⁴) using a unique new inclusive semileptonic tagging approach in Belle.

• We have validated the results using the two different control channel modes.

• To increase our sensitivity we will include other τ decay modes.

• We will extract the signal by using the template fitting on the final BDT score.

Backup

Input variables

Input variables = { $\Delta cos\theta$, ΔE_{Btag} , p_{Itag} , m_{ROE} , $n_{photons}$, n_{Lepton} }

 $\Delta \cos \theta$ is providing the best discrimination.