RNTuple Workshop 2024 Summary

Jakob Blomer for the ROOT team
SFT Group Meeting
2024-12-16

NOO

Data Analysis Framework

https://root.cern

22 Registered participants

o ~15intheroom
LHC experiment core
software developers present

defined the
path to "RNTuple 1.0"
The RNTuple stable on-disk format
was released with ROOT v6.34
o Ontime wrt timeline
announced to the LHCC and
experiments
This years workshop
o Concluded the API
review
o Discussed new ideas (design
stage) and possible
development approaches
o Discuss priorities for 2025

RNTuple Workshop 2024

https://indico.cern.ch/event/1468611/
https://indico.cern.ch/event/1303499/
https://www.anl.gov/hep-cce

Context: ROOT I/O Upgrade for HL-LHC

3000 fb!
4000 fb!
III 2020 2022 2023 2025 2026 2027 2028 2029 2030 III

LTI BT T
RNTuple work in progress in ROOT::Experimental RNTuple goes production, adoption phase

TTree enters legacy support mode

>2EB (now) — >10EB (end of HL-LHC)
~% of the currently projected WLCG budget on storage

Major I/0 upgrade of the event data file format and access API: TTree = RNTuple

RNTuple Main Results

e Major I/0 upgrade of the event data file format and access API: TTree » RNTuple
o Less disk and CPU usage for same data content
m 10-50% smaller files, better single-core performance often by factors
o Give access to novel and future storage technologies
m Native support for HPC and cloud object stores
m Async and parallel I/O: fully exploits modern NVMe drives
[] Design prepared for accelerators (e.g., GPUs, compression offloading)
o Systematic use of checksumming and exceptions to prevent silent I/O errors

e Initial support in ATLAS, CMS, LHCb, ALICE software frameworks
(for all data products currently stored in TTree [RECO, AOD, etc.])

e lLarge-scale testing with IT storage group
o 70 nodes, 100GbE EOS connection, 100TB inflated AGC benchmark

e ROOT 6.34 (Nov 2024): RNTuple stable on-disk format (version 1.0) released
o Future ROOT versions will read data written with 6.34

o Planned optional and possibly forward-compatibility breaking changes foreseen

e ROOT v6.36 (planned for Q2/2025): first set of APIs move out of ROOT::Experimental
o Taking into account the input received by the HEP-CCE review

RNTuple Code Base

e Part of the ROOT sources

e 40-50k lines of code
o out of which about 50% tests

v doc
Architecture.md e Plus tutorials, benchmarks, extra tools...
e Part of ROOT v7 (in ROOT::Experimental namespace)

e Extra documentation

0o : code architecture documentation for
developers and power users

v ntupleutil

o : used as a reference and for
3rd party readers/writers; plan to publish as an independent
CERN OPEN report

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/Architecture.md
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/BinaryFormatSpecification.md

PHYSLITE event size [kB/event]

RNTuple / TTree

ATLAS Preliminary Open Data [_ROOT 6.32.02, DOI:10.7483/0PENDATA. ATLAS.4ZES.DIHA

M. Foll / ATLAS

W TTree
"M RNTuple

LA AL RRRA LA AL AR LA LA

1z4 zstd-5 lzma-7

2E+12

100%

1.5E+12

1E+12

5E+11

OE+00

AGC

TTRee ZLIB [l TTree ZSTD M RNTuple

240
220
200
180
160
140
120
100
80
60
40
20

1/0 Throughput (ev/s)

Highlights from CHEP

CMS 1/O Throughput vs Threads

¢ RNTuple
+ RNTuple Smaller Buffers
+ TTree

2 4 6 8 10 12
Number of Threads

RNTuple

Il RNTuple ReadV Fix [l RNTuple Demux [l RNTuple 2x Condensed

Il RNTuple Cluster Size 100M [l RNTuple JCache

180 [s] —

120 [s] |

60s] -

0[s]

Progress since last year: type system

Type Class Types EDM Coverage RNTuple Status
PoD 0ol, char, std::byte, (u)int[8,16f§57€?tjh:>
loat, double
Type cast of PoDs
Records Manually built structs of PoDs yP Flat n-tuple
(Nested) vectors th:;:cho?, RVec, std::array, Reduced
-style fixed-size arrays AOD

String std::string
User-defined classes Non-cyclic classes with dictionaries
User-defined enums ith dicti i FUll AGD /

Scoped / unscoped enums with dictionaries ESD / RECO
User-defined collections Non-associative collection proxy

std::pair, std::tuple, std::bitset,
stdlib types std:: (unordered) (multi)set,

std:: (unordered) (multi)map
Alternating types std::var%ant, std::unique ptr,

std::optional
Streamer /O All ROOT streamable objects (stored as byte array)
L . Double32 t, fl6

ow-precision Custom precision / range Optimization benefitting all EDMs

floating points
(bfloat16, TensorFloat-32, other Al formats)

Progress since last year: AGC Testing |

Node Node 11-20 Node 21-30 Node 31-40 Node 41-50 Node 51-60 Node 61-70 8
L9000 Qo000 QOOo0 SO000 DO0N00 00000 0000 <
#?##._.#_#?ﬂ##_#?._.##.#F#__##_#_._#_###?F#?##._ =
e S 0 S A
‘ 100GE N;ETWORK |
wecresd | doGBIs [T 3 soesf L imsees
< 5 1 %ﬂ $35 $. (_) 0.8
. @)
: : : 0sD 0sD 0sD o |
S| oest || est rsT || est || FsT || FsT || FsT | : B | ® @) s E >
IT IT I I I IT | m
S oest || est || rst || Fst || Fst || RSt || FsT | T I T T T I T = T = T I - | ™
: IIII IIII IIII IIII IIII T I : | : CephFS
EOSPILOT : : EOSALICEO? 5 5 8 nodes 25GE
14 nodes 100GE 1334x 18TB HDDs B 125 nodes 100GE 12000x HDDs 7 ' 80 x 7.6 TB NVMe
24 PB - 20 PB usable 180 PB - 150 PB usable

. 568TB-284 TBusable .

Progress since last year: AGC Testing I

Introducing modified RNTuple format for AGC2%° with EOSALICEO?

- With a 100x inflated AGC?%
- dataset we observe that as
- the number of client nodes
- increases, the
- time
- processing time, resulting in -

initialization

gets close the

Single Analysis
extremely sparse
reaches avg. INGRES

222 GBit/s

during processing

345 GBit/s

[
100000
< 02 Measured 2x Condensed <> Processing Time -~ Initialization Time
02 Linear Expectation
6750 .\6784
@,
Q
E 1000
5 660 #-200
3808420
2708315, 294 274 254
p40 B 29 1008774 100 82 o328
67 76
3 47 55
26 32
18
10
1 10 20 30 40 50 60 70

Number of Client Nodes

Next step: Reconstruction and/or data
derivation benchmark(s)

. » Dense reading and (parallel) writing

Progress since last year: parallel writing & direct I/O

Reconsider trade-off between write speed and file size Writing in parallel to one file is as fast as writing
128 files
4,096 F ‘ |
= 2,048 | |
a 1,024 | -{ |- %~ uncompressed 32
2, 512 15124, level 4 ol |
=) 11777 (CX = 2.02)
; 122 [| zstd, level 5! B |
- 6 (CX =2.15) :
= 32] 5,
= 16 |- | lzmaﬂ level 7 - x- application scaling limit
g 8+ 4 (CX = 219) ------- seq. writing (with IMT)
< 2 --+--separate files =
= 4 — —o— files merged with hadd
| | | | | | | | - [+ TBufferMe'riger i
1 2 4 8 16 32 64 128 OX — uncompressed size ‘ ‘ ‘ _T_parallel writing
. == T B 1 2 4 8 16 32 64 128
threads compressed size 4 thrends
— https://indico.cern.ch/event/1338689/contributions/6010002 — https://arxiv.org/abs/2410.14239

e Truly parallel writing; prototype support for multi-process and MPI support

e Capable of fully exploiting NVMe drives

e Reaching throughput values that allow for meaningful contribution to
processing workflow of DUNE supernova event candidates

https://indico.cern.ch/event/1338689/contributions/6010002
https://arxiv.org/abs/2410.14239

Progress since last year

e RNTupleProcessor: friends & chains with solid underpinnings
o https://indico.cern.ch/event/1338689/contributions/6016196
o See talk by Florine later today:
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

e Connect RNTuple type description to TFile streamer info
(enabling, e.g., MakeProject and manual schema evolution)

e Late model extension in RNTupleMerger (TFileMerger) as well as
incremental merging

e Removal of 1GB TFile limit for RNTuple data (exception: streamer field)
e Tested limits: 100k columns, 100k clusters, 600M elements per page

o Some factor of 10 larger than largest examples we encounter
today (e.g., ~15k columns in CMS AOD)

https://indico.cern.ch/event/1338689/contributions/6016196
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

72 6F 6F 74
84

F&
Fo

4E
76

76

66

35

74

12
98

75
D4

D4

72
30

69

&D

2E

09

76
6F

D2

DA
6F

Tooling: RNTupleViewer

mem used: 1.5 KiB (peak: 1.5 KiB)

rookt d <
AR i
X v B d T
File RNTuple.root. 'RNTuple.rookt
v v c < d
n
Ly = d RBlob
L Contributors
The first ever RNTuple. ROO
T v6.35.001} <
firstName
std::string B
lastName skd::
skring
(]

P m
d. RBlob

- 3
F W
|

JakobPhilippeAxelDaniloSimon
BertrandMaxJavierEnricoSerqeyGio
vannalerryFlorine WillemijnBernh
ard Manfred¥incenzo Eduardololly
Alaettin SerhanlonasMaciejGiacom
oGriqoriSpecial thanksi. .o 4

R
3

= Ut @BlomercCana
1MaumannPiparoLeisibachBellenoto
rokLopez-GomezGuiraudLinevLazzar
i MiottoLingde GeusGruberPadulan
oChenMeteHahnfeldSzymanskiParoli
niRybkineto all framework develo
pers in the experimentsbdz. . T9
v 2 il d RBlob
p m
H

TFile Header 100 B
TFile Object 74 B
TFile Streamer Info 333 B
TFile FreeList 10 B
TKey List 58 B
RNTuple Anchor
RNTuple Header
RNTuple Footer

TKey Header

Page Start

Page ©

Checksum

Page List

ROOT version:

TFile compression

Num pages: 4

Num eleme

MNum entri

<} Highlight cluster

Highlight 2STD headers

RNTuple Header
Data
Envelope Preamble
Envelope type: Header
Envelope size: 332 B
Flags: 0x@
Name: Contributors

Description: The first ever RNTuple

ROOT version: ROOT v6. 35,001
Schema Description

Fields

Columns

Alias Columns

Extra Type Infos
Checksum: 1BS6DD211FDCATO

Further internal tooling:

e RNTuplelnspector
(presented last year)
RNTuplelmporter
(presented last year)
RNTupleExporter
(dumps pages)

We can imagine a set of power
tools, maintained outside the
ROOT source tree.

E.g., manual RNTuple
descriptor manipulation.

https://codeberg.org/silverweed/rntviewer

Topics: HEP-CCE Review

e As part of the last year's ROOT RNTuple Format and Feature Assessment, CCE was asked to host
an RNTuple API Review (focusing on framework use)

e Opento all everyone Argonne & (§) Brookhaven m
e Start: March 2024, Reviewers: e = il serueey Las
o ATLAS: Marcin Nowak, Serhan Mete, Peter van Gemmeren
CMS: Chris Jones, Matti Kortelainen, Dan Riley
o CAF: Amit Bashyal
o DUNE: Barnali Chowdhury
o CCE: Saba Sehrish, Philippe Canal, and several experts from Computer Science
e Produced mid-term report that was submitted to the ROOT team in September 2024
e Finding that RNTuple API is sufficient for adoption by experiment'’s production
frameworks
e Parallel to the API Review, experts in CCE shared studies about RNTuple functionality and
performance

(@)

e — RNTuple APl Review was a very useful exercise; substantially improved APl when it is still
cheap to change, facilitated collaboration with framework developers

Topics: Data Joins

RNTupleProcessor

~ RNTupleBaseProcessor “
RNTupleProcessor: :Create(RNTupleOpenSpec) s

rﬁi RNTupleChainProcessor]

RNTupleProcessor: :CreateChain({RNTupleProcessor})

RNTupleJoinProcessor

RNTupleProcessor: :Createloin({joinField}, {RNTupleProcessor})

[r—————

myElectrons
electronsil.root

myMuons
muonsl.root

myElectrons ‘
electrons2.root

myMuons
muons2.root

/

e Presented latest state of the RNTupleProcessor (chains & friends iteration)

e Positive feedback from experiments, addresses current use cases

e Questions and suggestions on index creation and how to persitify the index

Topics: Python API

import ROOT

RNTupleWriter = ROOT.Experimental.RNTupleWriter
RNTupleModel = ROOT.Experimental.RNTupleModel

model = RNTupleModel.Create()
model .MakeField[i)

with RNTupleWriter.Recreate(model,) as writer:
entry = writer.CreateEntry()
entry|] =
writer.Fill(entry)

New result from the hackathon: Python accessibility of the RNTuple native API
o NB: array-oriented programs best served by RNTuple support in RDF
Side result: implemented passing of unique pointer in PyROOT
LHCb raised the question of a C API for language bindings
o Thisis not a priority of the ROOT team for 2025 but the specification in principle

allows 3rd parties to go ahead

Topics: Schema Evolution

t {

= 1
std: :string fProperties;
fTemperature;
X;
fY;

fProperties;

fTemperature;

fR;

ClassDef(Event, fPhi;

ClassDef(Event,

e Schema evolution governed by rules
o Implicit (automatic) rules and
o |/O customization rules / (manual) read rules
m Extend the capabilities of automatic rules

e RNTuple implements the well-established ROOT I/O schema evolution mechanisms (partially done)
o Experiment support for cutting non-obvious cases from the automatic rules
o We discovered that manual rules are lacking expressiveness for some cases (eg, some class hierarchy changes)
m Manual I/O rules will need an extension of the current mechanism
o Opportunity to improve documentation and ability to reason about the system

Topics: Schema Evolution, Automatic Rules

Class Layout Change RNTuple Support Comment
Class Members Reorder members, add member, remove members Available
Add new base class, remove base class Available
Base Classes
Read derived in-memory class from base on-disk class
(not intermediate) ved! &4 ! — Manual rules
Reorder base classes Tbd (simple)
std::pair —— std::tuple Available Recurswe. evolution, .8
vector<int32_t> —
std::unique_ptr «— std::optional Available RVec<int64_t>
Types with identical std::vector «—— ROOT::RVec «—— collection proxy «— std::*set Available
on-disk representation . .
Between std::[unordered_][multiimap Available unique constraint check tbd
Between std:.:[unorderfadj[multl]me?p and Available
sequential collection of std::pair
Between bool and integral types (except std::byte) Available
PoD transformations Bet int It ith bounds checki t std::byt Availabl
(column-level transformation) etween integral types with bounds checking (except std::byte) vailable
Between floating point types Available safety check for FP class tbd
enum «—— integral type Tbd (simple)
Field-level std::atomic<T> «—— T Tbd (simple)
G std::unique_ptr<T>, std::optional<T> «——>T Tbd (intricate) uni-directional only?
fixed-sized array <——sequential collection Tbd (intricate) currently available for RVec only
Move members between base and derived class — Manual rules Prefer to move to manual schema
Class hierarchy changes L)
Insert or drop intermediate classes — Manual rules evolution, if feasible

Topics: RNTuple "Attributes”

e A future version of RNTuple will include some (internal) metadata
o Eg, UUID, ROOT provenance information

e Experiments store meta-data (e.g., job configuration) in independent extra trees
o Does not automatically copy or merge

e Proposal to add RNTuple "attribute sets"
o Technically each attribute set is its own RNTuple, hard-wired to the main RNTuple
o Attributes (entries of the attribute set) are attached to data row ranges
o Merges canonically, but should provide means for user-provided squash function

e First assessment shows some overlap between ROOT internal meta-data case and
experiment meta-data
o But also some differences
o Needs a second pass to determine if a common denominator can be found

Topics: SoA Data Structures

e Important for data products computed on GPUs struct Point {
int x3
e AoS most efficient on-disk description int y;
o Single size column ks

o Note that the columnar on-disk layout internally performs
an AoS — SoA transformation; but SoA layout not easily
exposed from TTree

using PointsAoS = ROOT::RVec<Point>;

struct PointsSoA {
ROOT::RVec<int> x;

e CMS: AoS — SoA transformation currently done with elaborated ROOT: :RVec<int> y;

I/0 read rules ;3
e RNTuple "View" APl became flexible enough to read AoS as SoA

e Further work needed on a safe API to write SoA records

PointsSoA soa;
auto points_x =

reader ->GetView<decltype (PointsSoA::x)>("points_x", &soa.x);
auto points_y =

reader ->GetView<decltype (PointsSoA::y)>("points_y", &soa.y);

Ongoing Issues

e Tuning (auto tuning?) of column encoding

data23_13p6TeV.00451140.physics_Main.r15774_p6304_p6482
T

Relative difference (Size per Event)
W AOD Reco. Data Domain

Relative difference (Size per Event) g F
Track Particles| ™ AOD Reco Data (Inner Detector)]

PrimaryVertices =

Track Particles Cluster links

Trigger
Calorimeter Topo Objects

|
|
|
M. Fall

Calorimeter Objects
Particle Flow Objects N
Large DO Track Particles Cluster
Taus

Calo Ring Objects Large DO Track Particles Cluster links
Truth

Inner Detector

Track Particles Cluster Assoc.

Forward Track Particles
Muons

Large DO Track Particles Cluster Assoc.
Eventinfo --- Maximum size reduction, 8.42%
—— Estimated size reduction 7.64% (90.8% of max), unsplit 12 fields
2 —— Estimated size reduction 7.64% (90.8% of max), unsplit 18 fields

—— Size reduction when using non-split encoding

Size reduction [% of split encoded RNTuple]

Large Radius Tracks Track Particles Cluster
Electrons and Photons

Disappearing Track Particles
Other

i
S

0 20 40 60
Gain [%] 1 100 200 300 400 500
Number of ordered fields with non-split encoding

-60 -40 -

o |IIIIIIIIII-
-
o

-10

w
S
a
S
v
3

20
Gain [%]

—https://indico.cern.ch/event/1338689/contributions/6010824/

Investigation of MiniAOD space savings (~7.5 %, would ideally be > 10% [somewhat arbitrary])
Framework support: profile & improve writing and reading from frameworks

Support for vectors with custom allocators (ATLAS)

Bulk reading optimizations (ALICE)

Validation suite for 3rd party readers

https://indico.cern.ch/event/1338689/contributions/6010824/

Priorities for 2025

e Define the first set of APIs to move out of ROOT::Experimental
o Planned for ROOT v6.36, i.e. likely May 2025
o More or less the classes subject to the HEP-CCE review
o We can extend the APIs later (e.g. additional ClusterPool tuning),
but once in production it will be costly to change existing APIs
o Not all RNTuple APIs will move out at the same time

e Fully functional schema evolution (basic functionality working for v6.36, full set possibly post v6.36)
e RNTupleProcessor: capability to arbitrarily combine friends and chains

e RNTuple attribute extension prototype, likely leading to v1.1 ondisk format

e Testing and validation on IT testbed with data derivation and/or reconstruction benchmark(s)

e Tuning, support, bug fixes, training: with the transition to production, the support effort begins

e Lower priority. S3 backend, intra-event links, checkpoints during writing, C API, sharded clusters and
horizontal merge

Closing Remarks

e 2024 was a critical year for RNTuple

Came from not being able to store any CMS data products except nano to being able to store all of them
Many more important challenges solved, in important areas for multiple experiments

= All experiments can store all their central data products in RNTuple format

= Released the first stable on-disk format in time!

o O O O

e We had many open questions at the end of last year...
o .. and we have a full plan of work (even beyond 2025) by the end of this year
o Solved enough problems to have confidence that we can solve the remaining ones, too

e We are entering a new phase in the RNTuple life cycle
o Transition to production comes with maintenance responsibility: support, training, bug fixes
o Expect slower pace regarding new functionality

e RNTuple (I/0O) workshops are important events to solicit input from the I/O experts of multiple experiments

o Reality check for new designs
o Align development priorities with experiment needs

