
https://root.cern

ROOT
Data Analysis Framework

RNTuple Workshop 2024 Summary

 Jakob Blomer for the ROOT team
SFT Group Meeting

2024-12-16

https://root.cern

RNTuple Workshop 2024

2

● Two afternoons
● 22 Registered participants

○ ~15 in the room
● LHC experiment core

software developers present

● Last year's workshop defined the
path to "RNTuple 1.0"

● The RNTuple stable on-disk format
was released with ROOT v6.34

○ On time wrt timeline
announced to the LHCC and
experiments

● This years workshop
○ Concluded the HEP-CCE API

review
○ Discussed new ideas (design

stage) and possible
development approaches

○ Discuss priorities for 2025

https://indico.cern.ch/event/1468611/
https://indico.cern.ch/event/1303499/
https://www.anl.gov/hep-cce

Context: ROOT I/O Upgrade for HL-LHC

Major I/O upgrade of the event data file format and access API: TTree → RNTuple

3

TTree enters legacy support mode

>2EB (now) → >10EB (end of HL-LHC)
~½ of the currently projected WLCG budget on storage

RNTuple Main Results
● Major I/O upgrade of the event data file format and access API: TTree → RNTuple

○ Less disk and CPU usage for same data content
■ 10-50% smaller files, better single-core performance often by factors

○ Give access to novel and future storage technologies
■ Native support for HPC and cloud object stores
■ Async and parallel I/O: fully exploits modern NVMe drives
■ Design prepared for accelerators (e.g., GPUs, compression offloading)

○ Systematic use of checksumming and exceptions to prevent silent I/O errors

● Initial support in ATLAS, CMS, LHCb, ALICE software frameworks
(for all data products currently stored in TTree [RECO, AOD, etc.])

● Large-scale testing with IT storage group
○ 70 nodes, 100GbE EOS connection, 100TB inflated AGC benchmark

● ROOT 6.34 (Nov 2024): RNTuple stable on-disk format (version 1.0) released
○ Future ROOT versions will read data written with 6.34
○ Planned optional and possibly forward-compatibility breaking changes foreseen

● ROOT v6.36 (planned for Q2/2025): first set of APIs move out of ROOT::Experimental
○ Taking into account the input received by the HEP-CCE review

4
Many results presented at CHEP'24

RNTuple Code Base

5

● Part of the ROOT sources

● 40-50k lines of code
○ out of which about 50% tests

● Plus tutorials, benchmarks, extra tools…

● Part of ROOT v7 (in ROOT::Experimental namespace)

● Extra documentation

○ Architecture.md: code architecture documentation for
developers and power users

○ BinaryFormatSpecification.md: used as a reference and for
3rd party readers/writers; plan to publish as an independent
CERN OPEN report

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/Architecture.md
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/BinaryFormatSpecification.md

Highlights from CHEP

6

M. Føll / ATLAS

Progress since last year: type system

7

Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t,
float, double

Flat n-tuple

Reduced
AOD

Full AOD /
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset,
std::(unordered_)(multi)set,
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available

Type cast of PoDs

Progress since last year: AGC Testing I

8

Node
1-10

Node 11-20 Node 21-30 Node 31-40 Node 41-50 Node 51-60 Node 61-70

/shared/ CephFS /home directory + batch system written in bash

EOSPILOT
14 nodes 100GE 1334x 18TB HDDs

 24 PB - 20 PB usable

FST FST FST FST FST FST FST

FST FST FST FST FST FST FST

EOSALICEO2

125 nodes 100GE 12000x HDDs
180 PB - 150 PB usable

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

OSD OSD OSD

OSD OSD OSD

CephFS
8 nodes 25GE

80 x 7.6 TB NVMe
 568 TB - 284 TB usable

CO
M

PU
TE

STO
RA

G
E

100GE NETWORK

40 GB/s 380 GB/s 22.5 GB/s

$4 $0.8$35

Max read

$/x
1 $/x

1
$/x

6/12

Price per Volume Relative Price

Progress since last year: AGC Testing II

9

With a 100x inflated AGC200
dataset we observe that as
the number of client nodes
increases, the initialization
time gets close the
processing time, resulting in
a breakdown of scalability.

Single Analysis
extremely sparse

reaches avg. INGRES
222 GBit/s

during processing

345 GBit/s

● Introducing modified RNTuple format for AGC200 with EOSALICEO2

Next step: Reconstruction and/or data
derivation benchmark(s)

🔹 → Dense reading and (parallel) writing

Progress since last year: parallel writing & direct I/O

10

● Truly parallel writing; prototype support for multi-process and MPI support
● Capable of fully exploiting NVMe drives
● Reaching throughput values that allow for meaningful contribution to

processing workflow of DUNE supernova event candidates

→ https://indico.cern.ch/event/1338689/contributions/6010002 → https://arxiv.org/abs/2410.14239

Writing in parallel to one file is as fast as writing
128 files

Reconsider trade-off between write speed and file size

https://indico.cern.ch/event/1338689/contributions/6010002
https://arxiv.org/abs/2410.14239

Progress since last year

11

● RNTupleProcessor: friends & chains with solid underpinnings
○ https://indico.cern.ch/event/1338689/contributions/6016196
○ See talk by Florine later today:

https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

● Connect RNTuple type description to TFile streamer info
(enabling, e.g., MakeProject and manual schema evolution)

● Late model extension in RNTupleMerger (TFileMerger) as well as
incremental merging

● Removal of 1GB TFile limit for RNTuple data (exception: streamer field)

● Tested limits: 100k columns, 100k clusters, 600M elements per page
○ Some factor of 10 larger than largest examples we encounter

today (e.g., ~15k columns in CMS AOD)

https://indico.cern.ch/event/1338689/contributions/6016196
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

Tooling: RNTupleViewer

12

 RNTupleViewer: https://codeberg.org/silverweed/rntviewer

We can imagine a set of power
tools, maintained outside the
ROOT source tree.

E.g., manual RNTuple
descriptor manipulation.

Further internal tooling:
● RNTupleInspector

(presented last year)
● RNTupleImporter

(presented last year)
● RNTupleExporter

(dumps pages)

https://codeberg.org/silverweed/rntviewer

Topics: HEP-CCE Review

13

● As part of the last year’s ROOT RNTuple Format and Feature Assessment, CCE was asked to host
an RNTuple API Review (focusing on framework use)

● Open to all everyone
● Start: March 2024, Reviewers:

○ ATLAS: Marcin Nowak, Serhan Mete, Peter van Gemmeren
○ CMS: Chris Jones, Matti Kortelainen, Dan Riley
○ CAF: Amit Bashyal
○ DUNE: Barnali Chowdhury
○ CCE: Saba Sehrish, Philippe Canal, and several experts from Computer Science

● Produced mid-term report that was submitted to the ROOT team in September 2024
● Finding that RNTuple API is sufficient for adoption by experiment’s production

frameworks
● Parallel to the API Review, experts in CCE shared studies about RNTuple functionality and

performance

● → RNTuple API Review was a very useful exercise; substantially improved API when it is still
cheap to change, facilitated collaboration with framework developers

Topics: Data Joins

14

● Presented latest state of the RNTupleProcessor (chains & friends iteration)

● Positive feedback from experiments, addresses current use cases

● Questions and suggestions on index creation and how to persitify the index

Topics: Python API

15

● New result from the hackathon: Python accessibility of the RNTuple native API
○ NB: array-oriented programs best served by RNTuple support in RDF

● Side result: implemented passing of unique pointer in PyROOT
● LHCb raised the question of a C API for language bindings

○ This is not a priority of the ROOT team for 2025 but the specification in principle
allows 3rd parties to go ahead

Topics: Schema Evolution

16

● Reading on-disk classes into a changed in-memory shape or changed member semantics

● Schema evolution governed by rules
○ Implicit (automatic) rules and
○ I/O customization rules / (manual) read rules

■ Extend the capabilities of automatic rules

● RNTuple implements the well-established ROOT I/O schema evolution mechanisms (partially done)
○ Experiment support for cutting non-obvious cases from the automatic rules
○ We discovered that manual rules are lacking expressiveness for some cases (eg, some class hierarchy changes)

■ Manual I/O rules will need an extension of the current mechanism
○ Opportunity to improve documentation and ability to reason about the system

Class Layout Change RNTuple Support Comment

Class Members Reorder members, add member, remove members Available

Base Classes
(not intermediate)

Add new base class, remove base class Available

Read derived in-memory class from base on-disk class → Manual rules

Reorder base classes Tbd (simple)

Types with identical
on-disk representation

std::pair ←→ std::tuple Available

std::unique_ptr ←→ std::optional Available

std::vector ←→ ROOT::RVec ←→ collection proxy ←→ std::*set Available

Between std::[unordered_][multi]map Available unique constraint check tbd

Between std::[unordered_][multi]map and
sequential collection of std::pair

Available

PoD transformations
(column-level transformation)

Between bool and integral types (except std::byte) Available

Between integral types with bounds checking (except std::byte) Available

Between floating point types Available safety check for FP class tbd

Field-level
transformations

enum ←→ integral type Tbd (simple)

std::atomic<T> ←→ T Tbd (simple)

std::unique_ptr<T>, std::optional<T> ←→T Tbd (intricate) uni-directional only?

fixed-sized array ←→sequential collection Tbd (intricate) currently available for RVec only

Class hierarchy changes
Move members between base and derived class → Manual rules Prefer to move to manual schema

evolution, if feasibleInsert or drop intermediate classes → Manual rules

Topics: Schema Evolution, Automatic Rules

17

Recursive evolution, e.g.
vector<int32_t> →
RVec<int64_t>

Topics: RNTuple "Attributes"

18

● A future version of RNTuple will include some (internal) metadata
○ Eg, UUID, ROOT provenance information

● Experiments store meta-data (e.g., job configuration) in independent extra trees
○ Does not automatically copy or merge

● Proposal to add RNTuple "attribute sets"
○ Technically each attribute set is its own RNTuple, hard-wired to the main RNTuple
○ Attributes (entries of the attribute set) are attached to data row ranges
○ Merges canonically, but should provide means for user-provided squash function

● First assessment shows some overlap between ROOT internal meta-data case and
experiment meta-data

○ But also some differences
○ Needs a second pass to determine if a common denominator can be found

Topics: SoA Data Structures

19

● Important for data products computed on GPUs

● AoS most efficient on-disk description
○ Single size column
○ Note that the columnar on-disk layout internally performs

an AoS → SoA transformation; but SoA layout not easily
exposed from TTree

● CMS: AoS → SoA transformation currently done with elaborated
I/O read rules

● RNTuple "View" API became flexible enough to read AoS as SoA

● Further work needed on a safe API to write SoA records

Ongoing Issues

20

● Tuning (auto tuning?) of column encoding

● Investigation of MiniAOD space savings (~7.5 %, would ideally be > 10% [somewhat arbitrary])
● Framework support: profile & improve writing and reading from frameworks
● Support for vectors with custom allocators (ATLAS)
● Bulk reading optimizations (ALICE)
● Validation suite for 3rd party readers

→https://indico.cern.ch/event/1338689/contributions/6010824/

M. Føll

https://indico.cern.ch/event/1338689/contributions/6010824/

Priorities for 2025

21

● Define the first set of APIs to move out of ROOT::Experimental
○ Planned for ROOT v6.36, i.e. likely May 2025
○ More or less the classes subject to the HEP-CCE review
○ We can extend the APIs later (e.g. additional ClusterPool tuning),

but once in production it will be costly to change existing APIs
○ Not all RNTuple APIs will move out at the same time

● Fully functional schema evolution (basic functionality working for v6.36, full set possibly post v6.36)

● RNTupleProcessor: capability to arbitrarily combine friends and chains

● RNTuple attribute extension prototype, likely leading to v1.1 ondisk format

● Testing and validation on IT testbed with data derivation and/or reconstruction benchmark(s)

● Tuning, support, bug fixes, training: with the transition to production, the support effort begins

● Lower priority: S3 backend, intra-event links, checkpoints during writing, C API, sharded clusters and
horizontal merge

Closing Remarks

22

● 2024 was a critical year for RNTuple
○ Came from not being able to store any CMS data products except nano to being able to store all of them
○ Many more important challenges solved, in important areas for multiple experiments
○ → All experiments can store all their central data products in RNTuple format
○ → Released the first stable on-disk format in time!

● We had many open questions at the end of last year…
○ … and we have a full plan of work (even beyond 2025) by the end of this year
○ Solved enough problems to have confidence that we can solve the remaining ones, too

● We are entering a new phase in the RNTuple life cycle
○ Transition to production comes with maintenance responsibility: support, training, bug fixes
○ Expect slower pace regarding new functionality

● RNTuple (I/O) workshops are important events to solicit input from the I/O experts of multiple experiments
○ Reality check for new designs
○ Align development priorities with experiment needs

