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22 Registered participants

o ~15intheroom
LHC experiment core
software developers present

defined the
path to "RNTuple 1.0"
The RNTuple stable on-disk format
was released with ROOT v6.34
o Ontime wrt timeline
announced to the LHCC and
experiments
This years workshop
o Concluded the API
review
o  Discussed new ideas (design
stage) and possible
development approaches
o  Discuss priorities for 2025

RNTuple Workshop 2024



https://indico.cern.ch/event/1468611/
https://indico.cern.ch/event/1303499/
https://www.anl.gov/hep-cce

Context: ROOT I/O Upgrade for HL-LHC
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RNTuple work in progress in ROOT::Experimental RNTuple goes production, adoption phase

TTree enters legacy support mode

>2EB (now) — >10EB (end of HL-LHC)
~% of the currently projected WLCG budget on storage

Major I/0 upgrade of the event data file format and access API: TTree = RNTuple




RNTuple Main Results

e Major I/0 upgrade of the event data file format and access API: TTree » RNTuple
o  Less disk and CPU usage for same data content
m  10-50% smaller files, better single-core performance often by factors
o  Give access to novel and future storage technologies
m  Native support for HPC and cloud object stores
m  Async and parallel I/O: fully exploits modern NVMe drives
[ ] Design prepared for accelerators (e.g., GPUs, compression offloading)
o  Systematic use of checksumming and exceptions to prevent silent I/O errors

e Initial support in ATLAS, CMS, LHCb, ALICE software frameworks
(for all data products currently stored in TTree [RECO, AOD, etc.])

e lLarge-scale testing with IT storage group
o 70 nodes, 100GbE EOS connection, 100TB inflated AGC benchmark

e ROOT 6.34 (Nov 2024): RNTuple stable on-disk format (version 1.0) released
o  Future ROOT versions will read data written with 6.34

o  Planned optional and possibly forward-compatibility breaking changes foreseen

e ROOT v6.36 (planned for Q2/2025): first set of APIs move out of ROOT::Experimental
o  Taking into account the input received by the HEP-CCE review



RNTuple Code Base

e Part of the ROOT sources

e 40-50k lines of code
o out of which about 50% tests

v doc
Architecture.md e Plus tutorials, benchmarks, extra tools...
e Part of ROOT v7 (in ROOT::Experimental namespace)

e Extra documentation

0o : code architecture documentation for
developers and power users

v ntupleutil

o : used as a reference and for
3rd party readers/writers; plan to publish as an independent
CERN OPEN report



https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/Architecture.md
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/BinaryFormatSpecification.md
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Progress since last year: type system

Type Class Types EDM Coverage RNTuple Status
PoD 0ol, char, std::byte, (u)int[8,16f§57€?tjh:>
loat, double
Type cast of PoDs
Records Manually built structs of PoDs yP Flat n-tuple
(Nested) vectors th:;:cho?, RVec, std::array, Reduced
-style fixed-size arrays AOD

String std::string
User-defined classes Non-cyclic classes with dictionaries
User-defined enums ith dicti i FUll AGD /

Scoped / unscoped enums with dictionaries ESD / RECO
User-defined collections Non-associative collection proxy

std::pair, std::tuple, std::bitset,
stdlib types std:: (unordered ) (multi)set,

std:: (unordered ) (multi)map
Alternating types std::var%ant, std::unique ptr,

std::optional
Streamer /O All ROOT streamable objects (stored as byte array)
L . Double32 t, fl6

ow-precision Custom precision / range Optimization benefitting all EDMs

floating points
(bfloat16, TensorFloat-32, other Al formats)




Progress since last year: AGC Testing |
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Progress since last year: AGC Testing I

Introducing modified RNTuple format for AGC2%° with EOSALICEO?
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Next step: Reconstruction and/or data
derivation benchmark(s)

. » Dense reading and (parallel) writing




Progress since last year: parallel writing & direct I/O

Reconsider trade-off between write speed and file size Writing in parallel to one file is as fast as writing
128 files
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— https://indico.cern.ch/event/1338689/contributions/6010002 — https://arxiv.org/abs/2410.14239

e Truly parallel writing; prototype support for multi-process and MPI support

e Capable of fully exploiting NVMe drives

e Reaching throughput values that allow for meaningful contribution to
processing workflow of DUNE supernova event candidates


https://indico.cern.ch/event/1338689/contributions/6010002
https://arxiv.org/abs/2410.14239

Progress since last year

e RNTupleProcessor: friends & chains with solid underpinnings
o https://indico.cern.ch/event/1338689/contributions/6016196
o See talk by Florine later today:
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

e Connect RNTuple type description to TFile streamer info
(enabling, e.g., MakeProject and manual schema evolution)

e Late model extension in RNTupleMerger (TFileMerger) as well as
incremental merging

e Removal of 1GB TFile limit for RNTuple data (exception: streamer field)
e Tested limits: 100k columns, 100k clusters, 600M elements per page

o Some factor of 10 larger than largest examples we encounter
today (e.g., ~15k columns in CMS AOD)


https://indico.cern.ch/event/1338689/contributions/6016196
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins
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Tooling: RNTupleViewer
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RNTuple Header
Data
Envelope Preamble
Envelope type: Header
Envelope size: 332 B
Flags: 0x@
Name: Contributors

Description: The first ever RNTuple

ROOT version: ROOT v6. 35,001
Schema Description

Fields

Columns

Alias Columns

Extra Type Infos
Checksum: 1BS6DD211FDCATO

Further internal tooling:

e RNTuplelnspector
(presented last year)
RNTuplelmporter
(presented last year)
RNTupleExporter
(dumps pages)

We can imagine a set of power
tools, maintained outside the
ROOT source tree.

E.g., manual RNTuple
descriptor manipulation.



https://codeberg.org/silverweed/rntviewer

Topics: HEP-CCE Review

e As part of the last year's ROOT RNTuple Format and Feature Assessment, CCE was asked to host
an RNTuple API Review (focusing on framework use)

e Opento all everyone Argonne &  (§) Brookhaven m
e Start: March 2024, Reviewers: e = il serueey Las
o  ATLAS: Marcin Nowak, Serhan Mete, Peter van Gemmeren
CMS: Chris Jones, Matti Kortelainen, Dan Riley
o CAF: Amit Bashyal
o DUNE: Barnali Chowdhury
o CCE: Saba Sehrish, Philippe Canal, and several experts from Computer Science
e Produced mid-term report that was submitted to the ROOT team in September 2024
e Finding that RNTuple API is sufficient for adoption by experiment'’s production
frameworks
e Parallel to the API Review, experts in CCE shared studies about RNTuple functionality and
performance

(@)

e — RNTuple APl Review was a very useful exercise; substantially improved APl when it is still
cheap to change, facilitated collaboration with framework developers



Topics: Data Joins

RNTupleProcessor

~ RNTupleBaseProcessor “
RNTupleProcessor: :Create(RNTupleOpenSpec) s

rﬁi RNTupleChainProcessor ]

RNTupleProcessor: :CreateChain( {RNTupleProcessor})

RNTupleJoinProcessor

RNTupleProcessor: :Createloin({joinField}, {RNTupleProcessor})

[r—————

myElectrons
electronsil.root

myMuons
muonsl.root

myElectrons ‘
electrons2.root

myMuons
muons2.root

/

e Presented latest state of the RNTupleProcessor (chains & friends iteration)

e Positive feedback from experiments, addresses current use cases

e Questions and suggestions on index creation and how to persitify the index




Topics: Python API

import ROOT

RNTupleWriter = ROOT.Experimental.RNTupleWriter
RNTupleModel = ROOT.Experimental.RNTupleModel

model = RNTupleModel.Create()
model .MakeField[ i )

with RNTupleWriter.Recreate(model, ) as writer:
entry = writer.CreateEntry()
entry| ] =
writer.Fill(entry)

New result from the hackathon: Python accessibility of the RNTuple native API
o NB: array-oriented programs best served by RNTuple support in RDF
Side result: implemented passing of unique pointer in PyROOT
LHCb raised the question of a C API for language bindings
o Thisis not a priority of the ROOT team for 2025 but the specification in principle

allows 3rd parties to go ahead




Topics: Schema Evolution

t {

= 1
std: :string fProperties;
fTemperature;
X;
fY;

fProperties;

fTemperature;

fR;

ClassDef(Event, fPhi;

ClassDef(Event,

e Schema evolution governed by rules
o Implicit (automatic) rules and
o |/O customization rules / (manual) read rules
m Extend the capabilities of automatic rules

e RNTuple implements the well-established ROOT I/O schema evolution mechanisms (partially done)
o  Experiment support for cutting non-obvious cases from the automatic rules
o  We discovered that manual rules are lacking expressiveness for some cases (eg, some class hierarchy changes)
m  Manual I/O rules will need an extension of the current mechanism
o Opportunity to improve documentation and ability to reason about the system



Topics: Schema Evolution, Automatic Rules

Class Layout Change RNTuple Support Comment
Class Members Reorder members, add member, remove members Available
Add new base class, remove base class Available
Base Classes
Read derived in-memory class from base on-disk class
(not intermediate) ved! &4 ! — Manual rules
Reorder base classes Tbd (simple)
std::pair —— std::tuple Available Recurswe. evolution, .8
vector<int32_t> —
std::unique_ptr «— std::optional Available RVec<int64_t>
Types with identical std::vector «—— ROOT::RVec «—— collection proxy «— std::*set Available
on-disk representation . .
Between std::[unordered_][multiimap Available unique constraint check tbd
Between std:.:[unorderfadj[multl]me?p and Available
sequential collection of std::pair
Between bool and integral types (except std::byte) Available
PoD transformations Bet int It ith bounds checki t std::byt Availabl
(column-level transformation) etween integral types with bounds checking (except std::byte) vailable
Between floating point types Available safety check for FP class tbd
enum «—— integral type Tbd (simple)
Field-level std::atomic<T> «—— T Tbd (simple)
G std::unique_ptr<T>, std::optional<T> «——>T Tbd (intricate) uni-directional only?
fixed-sized array <——sequential collection Tbd (intricate) currently available for RVec only
Move members between base and derived class — Manual rules Prefer to move to manual schema
Class hierarchy changes L )
Insert or drop intermediate classes — Manual rules evolution, if feasible



Topics: RNTuple "Attributes”

e A future version of RNTuple will include some (internal) metadata
o Eg, UUID, ROOT provenance information

e Experiments store meta-data (e.g., job configuration) in independent extra trees
o Does not automatically copy or merge

e Proposal to add RNTuple "attribute sets"
o Technically each attribute set is its own RNTuple, hard-wired to the main RNTuple
o Attributes (entries of the attribute set) are attached to data row ranges
o Merges canonically, but should provide means for user-provided squash function

e First assessment shows some overlap between ROOT internal meta-data case and
experiment meta-data
o But also some differences
o Needs a second pass to determine if a common denominator can be found



Topics: SoA Data Structures

e Important for data products computed on GPUs struct Point {
int x3
e AoS most efficient on-disk description int y;
o  Single size column ks

o Note that the columnar on-disk layout internally performs
an AoS — SoA transformation; but SoA layout not easily
exposed from TTree

using PointsAoS = ROOT::RVec<Point>;

struct PointsSoA {
ROOT::RVec<int> x;

e CMS: AoS — SoA transformation currently done with elaborated ROOT: :RVec<int> y;

I/0 read rules ;3
e RNTuple "View" APl became flexible enough to read AoS as SoA

e Further work needed on a safe API to write SoA records

PointsSoA soa;
auto points_x =

reader ->GetView<decltype (PointsSoA::x)>("points_x", &soa.x);
auto points_y =

reader ->GetView<decltype (PointsSoA::y)>("points_y", &soa.y);



Ongoing Issues

e Tuning (auto tuning?) of column encoding
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—https://indico.cern.ch/event/1338689/contributions/6010824/

Investigation of MiniAOD space savings (~7.5 %, would ideally be > 10% [somewhat arbitrary])
Framework support: profile & improve writing and reading from frameworks

Support for vectors with custom allocators (ATLAS)

Bulk reading optimizations (ALICE)

Validation suite for 3rd party readers


https://indico.cern.ch/event/1338689/contributions/6010824/

Priorities for 2025

e Define the first set of APIs to move out of ROOT::Experimental
o Planned for ROOT v6.36, i.e. likely May 2025
o  More or less the classes subject to the HEP-CCE review
o  We can extend the APIs later (e.g. additional ClusterPool tuning),
but once in production it will be costly to change existing APIs
o Not all RNTuple APIs will move out at the same time

e Fully functional schema evolution (basic functionality working for v6.36, full set possibly post v6.36)
e RNTupleProcessor: capability to arbitrarily combine friends and chains

e RNTuple attribute extension prototype, likely leading to v1.1 ondisk format

e Testing and validation on IT testbed with data derivation and/or reconstruction benchmark(s)

e Tuning, support, bug fixes, training: with the transition to production, the support effort begins

e Lower priority. S3 backend, intra-event links, checkpoints during writing, C API, sharded clusters and
horizontal merge



Closing Remarks

e 2024 was a critical year for RNTuple

Came from not being able to store any CMS data products except nano to being able to store all of them
Many more important challenges solved, in important areas for multiple experiments

= All experiments can store all their central data products in RNTuple format

= Released the first stable on-disk format in time!

o O O O

e We had many open questions at the end of last year...
o .. and we have a full plan of work (even beyond 2025) by the end of this year
o  Solved enough problems to have confidence that we can solve the remaining ones, too

e We are entering a new phase in the RNTuple life cycle
o  Transition to production comes with maintenance responsibility: support, training, bug fixes
o  Expect slower pace regarding new functionality

e RNTuple (I/0O) workshops are important events to solicit input from the I/O experts of multiple experiments

o  Reality check for new designs
o Align development priorities with experiment needs



