
Electron-Beam Based Neutron Sources
BE Department Seminars

8th of November, 2024

Javier Olivares Herrador 1,2, Lawrence M. Wroe1,  Andrea Latina1, Walter Wuensch1, Steinar Stapnes1, 
Nuria Fuster-Martinez2, Benito Gimeno2, Daniel Esperante2.

1 CERN, Meyrin, 1217, Switzerland.
2 Instituto de Física Corpuscular (IFIC), CSIC-University of Valencia. Calle Catedrático José Beltrán Martínez, 2, 46980 
Paterna (Valencia), Spain



08.11.2024 Javier Olivares Herrador | Electron-beam based Neutron Sources 2

Is an electron linac a suitable driver for 
neutron production? 

To answer this question, I will discuss: 

I. The necessity for neutron sources & mechanisms of neutron production

II. Unmoderated neutron spectrum characterization

III. Challenges in the use of high-intensity electron linacs

I. Comparison with the state-of-the-art

IV. Neutron moderation and brightness/brilliance discussion

V. VULCAN project 

VI. Conclusions
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I. Necessity for neutron sources
● Uprising demand: Wide variety of research areas make use of neutrons

– Not only research: Industrial and medical applications! [1, 2]
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I. Neutron production with accelerators
● Neutron sources migrating from nuclear reactors to accelerator-based facilities [3]
● Hadron-based machines. Direct processes:

– Spallation
– Controlled nuclear reaction:

● Electron-based machines. Indirect process:
– Bremmstrahlung + Photonuclear reaction

Bremmstrahlung spectrum for different electron 
beams against tungsten.
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I. Neutron production with accelerators
● Neutron sources migrating from nuclear reactors to accelerator-based facilities [3]
● Hadron-based machines. Direct processes:

– Spallation
– Controlled nuclear reaction:

● Electron-based machines. Indirect process:
– Bremmstrahlung + Photonuclear reaction

Photonuclear cross section W(g,n).
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II. Neutron production with electrons
● Single tungsten target where both processes occur 

● G4beamlines simulations [4]
– Optimal dimensions: r = 40mm; L = 80 mm

Neutron production setup Dimensions scan for maximum yield for <Ee> = 500 MeV Optimal yields for different energies
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II. Unmoderated neutron spectrum
● For the optimized W target, we note:

– Backward emission > Forward emission
– Plateau of ~40 deg around max emission (130deg)

Neutron detection dependency with incidence angle and <Ee> 
= 500 MeV and θi = 0 deg.
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II. Unmoderated neutron spectrum
● For the optimized W target, we note:

– Backward emission > Forward emission
– Plateau of ~40 deg around max emission (130deg)
– Maxwellian neutron emission with ‹En› ~ 1 MeV

Energy distribution for different detecting angles.
‹Ee› = 500 MeV 

Energy distribution for different detecting angles.
θi = 0 deg; θd = 130 deg. For different energies
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III. High intensity e-linac proposals
● Targeted figure of merit: Source strength

● Two normal-conducting high-intensity linacs are considered
– HPCI – linac: S-band Photoinjector + X-band TW structures [5]
– CTF3 drive-beam linac: S-band Thermoionic gun + S-band TW structures [6]

High-intensity compact linac specifications [5, 6]

Train schematics for the HPCI linac
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III. Full Beam Loading Operation
● Beam Loading: Gradient reduction due to beam-cavity interaction

– The beam excites the fundamental mode in the decelerating phase

● Implemented in RF-Track: In-house particle tracking code
– Allows tracking of macroparticle bunches in complex 3D fieldmaps considering collective effects
– Interface with Python and Octave
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III. Full Beam Loading Operation
● Beam Loading: Gradient reduction due to beam-cavity interaction

● Full Beam Loading: High intensity so that all energy is substracted from the structure 

Accelerating gradient of an HPCI X-band linac in 
full BL operation

Full BL configurations (refer to steady state)
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III. Full Beam Loading Operation
● Beam Loading: Gradient reduction due to beam-cavity interaction

● Full Beam Loading: High intensity so that all energy is substracted from the structure 

Accelerating gradient of an HPCI X-band linac in 
full BL operation

Full BL configurations (refer to steady state)

Challenges: Beam dynamics, heat deposition

I use 1000 bunches
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III. Full Beam Loading Operation
● Beam Loading: Gradient reduction due to beam-cavity interaction

● Full Beam Loading: High intensity so that all energy is substracted from the structure

● Despite BL being inherent, it maximizes the RF-to-beam efficiency.

RF power and beam energy gain power



08.11.2024 Javier Olivares Herrador | Electron-beam based Neutron Sources 14

III. Heat Deposition
● Non-uniform energy deposition → Large temperature increase → Non-elastic mechanical stresses

● Depends on beam intensity and beam size (σx = σy = 1.3 mm)

Heat deposition profile at z= 0 mm. Heat deposition profile at z = 80 mm.
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III. Heat Deposition
● Non-uniform energy deposition → Large temperature increase → Non-elastic mechanical stresses

● Depends on beam intensity and beam size (σx = σy = 1.3 mm)

● Pure tungsten: Limit of 35 J/g

PEDD values for the different e-linac proposals 
with σx = σy = 1.3 mm
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III. Heat Deposition
● Non-uniform energy deposition → Large temperature increase → Non-elastic mechanical stresses

● Depends on beam intensity and beam size (σx = σy = 1.3 mm)

● Pure tungsten: Limit of 35 J/g

PEDD values for the different e-linac proposals 
with σx = σy = 1.3 mm

For CTF3, PEDD @ 500 MeV exceeds the 35 J/g limit by a 
factor 4.
Transverse beam size can be aumented a factor 2

→ Necessity to carry out beam dynamics simulations 
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III. State-of-the-art comparison
[7]
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III. State-of-the-art comparison
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III. Efficiency comparison

Efficiency comparison for both electron linac proposals at 500 MeV.
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IV. Thermal and cold neutron moderation
● Material science: Diffractrometry and imaging experiments

– Require moderated neutrons – rich H compounds
● Targeted figure of merit: Average brightness

● Optimal dimensions: Lthermal = 60 mm; Lcold = 25 mm.

Thermal moderator-target assembly. 
CH4 layer 

Cold moderator-target assembly. 
Liquid H2 (20K) layer 



08.11.2024 Javier Olivares Herrador | Electron-beam based Neutron Sources 21

IV. Thermal and cold neutron detection

Thermal moderator-target assembly window location (up) 
and azimutal dependency of the yield (down) 

Backward/Lateral maximum emission

Azimutal isotropy

Cold moderator-target assembly window location (up) 
and azimutal dependency of the yield (down) 
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IV. Average Brightness
● Proportional to electron intensity (CTF3 > HPCI)

HPCI - thermalCTF3 d.b - thermal

Thermal moderator-target average brightness for 
different electron energies for CTF3 drive beam linac.

Thermal moderator-target average brightness for 
different electron energies for HPCI linac.
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IV. Average Brightness
● Proportional to electron intensity (CTF3 > HPCI)

HPCI - ColdCTF3 d.b - Cold

Cold moderator-target average brightness for different 
electron energies for CTF3 drive beam linac.

Cold moderator-target average brightness for different 
electron energies for HPCI linac.
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IV. Peak brightness
● Time-resolution of the brightness spectrum

– Convolves electron pulse with neutron response

● Cold and thermal neutron responses extend several µs. GHz electron pulses extend 100s ns
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IV. Peak brightness
● For the case of electron trains (few ns), the peak brightness is just the normalization of gλ to the total 

train charge.

HPCI - thermalCTF3 d.b - thermal

Thermal moderator-target peak brightness for different 
electron energies for CTF3 drive beam linac.

Thermal moderator-target peak brightness for different 
electron energies for HPCI linac.
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IV. Peak brightness
● For the case of electron trains (few ns), the peak brightness is just the normalization of gλ to the total 

train charge.

HPCI - ColdCTF3 d.b - Cold

Cold moderator-target peak brightness for different 
electron energies for CTF3 drive beam linac.

Cold moderator-target peak brightness for different 
electron energies for HPCI linac.
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IV. Brightness State-of-the-art comparison
● [7] [8] [9]

Thermal neutron brightness state-of-the-art. Cold neutron brightness state-of-the-art.
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V. VULCAN 
● Commercial off-the-shelf CANS (compact accelerator-based neutron source) [10]
● VULCAN = Versatile ULtra Compact Accelerator-based Neutron source

● Collaboration between DAES SA and CERN → Industrial implementation

● Targeted applications:
– In-situ analysis of battery and fuel cell electrodes
– Measurements of internal stresses of metallic and ceramic components

Courtesy of L.M. Wroe
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V. VULCAN 

Electron beam requirements.
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V. VULCAN 
REQUIREMENTS

● Beam power: > 1 kW
– Average beam current > 29 µA

● Peak beam Current > 290 mA

● Length: < 10 m

● Cost: < 5 M€

ACCELERATOR DESIGN CHOICES
● Thermoionic gun

– High average intensities

● High gradient RF cavities (3-12 GHz)
– TW: Compatible with pulse compressor

● RF power source: klystron
– Peak power in 5-50 MW
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Conclusions
● Neutrons are produced from electron beams by Bremsstrahlung + Photonuclear excitation
● Neutron production is a trade off between beam power, cost and length. Electron-linac-based neutron 

sources serve as affordable & efficient and middle-flux options
– Eg: VULCAN – compact, suited for industrial purposes

● Electron linacs are suitable for multi-purpose facilities since the unmoderated energy spectrum does 
not vary strongly with the initial electron energy 
– Dfferent intensities can be achieved while keeping the same moderating scheme can be adopted 

for different values of Ee .⟨ ⟩

● High-energy and high-intensity electron linacs (like CTF3 drive beam linac at 300, 500 MeV) can provide 
bright neutron beams comparable to proton-linac-based and spallation sources.
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Further work
● Further beam dynamics simulations with RF-Track:

– Focusing
– Impact of BL and wakefields

● Specific target-moderator design to meet the requirements of a particular application
– Further engineering aspects to be considered

● VULCAN: Beam dynamics and EM simulations ongoing

– CDR in writing phase. 
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BACK UP SLIDES
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III. Unmoderated neutron spectrum
● For the optimized W target, we note:

– Isotropy in incidence direction θi 
– Isotropy in polar detecting angle: Up to 40 deg.
– Maxwellian neutron emission with ‹En› ~ 1 MeV
– Increase of σEn due to high En neutrons; little change in ‹En›

Energy neutron spectrum details detected at θd = 130 deg
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I. Power-Diffusion PDE
● Gradient reduction in terms of figures of merit:

Common features: 
– Beam Loading term: Decelerating gradient dependent on Intensity.
– Quasi-static approximation: 

● Admitted temporal dependency of phasors → G depends on t 

Beam Loading term!
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