PCOAST: A Pauli-based Quantum Circuit Optimization Framework

Jennifer Paykin, Albert T. Schmitz, Mohannad Ibrahim, Xin-Chuan Wu, and A. Y. Matsuura

Carla Rieger (CERN QTI | TUM)

The PCOAST framework - in a nutshell

- Toolchain for Pauli-based Cirucit Optimization, Analysis and Synthesis.

Based on commutative properties of Pauli strings.
(Recall: unitary circuits can be decomposed into Clifford and non-Clifford gates represented by Pauli rotations)

- Technique is adapted to **mixed unitary and non-unitary circuits**.

Paykin, Jennifer, et al. "PCOAST: a Pauli-based quantum circuit optimization framework." 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). Vol. 1. IEEE, 2023.

Distinguishing optimization procedures

Local, peephole-style optimization

 $\quad \longleftrightarrow \quad$

- Replace **local** patterns
- General circuit structure is **preserved**

- Global optimizations
- **Convert** circuit to intermediate mathematical representation (IR)
- **Simplify** IR according to structural rules
- **Synthesize** circuit back

Distinguishing optimization procedures

Local, peephole-style optimization

← →

- Replace **local** patterns
- General circuit structure is **preserved**

- **Convert** circuit to intermediate mathematical representation (IR)
- **Simplify** IR according to structural rules
- **Synthesize** circuit back

Distinguishing optimization procedures

Local, peephole-style optimization

- Replace **local** patterns
- General circuit structure is **preserved**

Global optimizations

- **Convert** circuit to intermediate mathematical representation (IR)
- **Simplify** IR according to structural rules
 - Synthesize circuit back

The circuit structure may be significantly different from the original

PCOAS

5

Full PCOAST optimization pass

Classical-quantum states

Operate over mixed classical-quantum states (cq-states)

$$\mathcal{C} \in \mathrm{CQ}^{\mathcal{M}} = \mathcal{M} \to \mathcal{C}^n \times \mathcal{C}^n$$

$$m \mapsto \gamma_m$$

MEM

quantum state partial density matrix with

classical state

 $\llbracket C \rrbracket : \mathbf{CQ}^{\mathcal{M}_1} \to \mathbf{CQ}^{\mathcal{M}_2}$

 $0 \leq tr(\gamma_m) \leq 1$ ~ prob. of observing

Semantics of a quantum circuit *C* can be described by a classicalquantum channel

8

Optimization variants

Hold outcome:

- optimization **preserves the semantics** of the original circuit precisely

 $\chi^1 = \frac{1}{2} \Leftrightarrow \forall m \in \mathcal{M} \quad \chi_m^1 = \chi_m^2$

Release outcome:

- More **aggressive** optimization can be applied
- Preserve same measurement result during the optimization strategy
- Drop unitary gates that can be delayed after the measurement
- Produce measurement results that are **statistically equivalent**

 $\gamma^1 = r^{\text{elease}} \gamma^2 \iff \forall m \in \mathcal{M}$ $\text{tr}(\gamma_m^1) = \text{tr}(\gamma_m^2)$

Recap on density matrices

Quantum state (positive semidefinite, hermitian, complex matrix with trace 1) $U \rho U^{\dagger}$

Unitary transformation (conjugation by unitary)

Can formulate the behaviour of a quantum circuit over density matrices as a **quantum channel**

Pauli group

Commutativity of a Pauli *p* given by:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \lambda(p_1, p_2) = \begin{cases} 0 & p_1 \perp p_2 \\ 1 & p_1 \not\perp p_2 \end{cases}$$

Generalize to *n*-qubit Paulis

$$P = \alpha(p_0, \dots, p_{n-1}) \in \mathcal{P}_n \quad \alpha \in \{1, -1, i, -i\}$$

Commutativity
$$P \cdot P' = (-1)^{\lambda(P, P')} P' \cdot P \quad \text{with} \quad \lambda(P, P') \in \{0, 1\}$$
$$\lambda(\alpha(p_0, \dots, p_{n-1}), \alpha'(p'_0, \dots, p'_{n-1})) = \sum_{i=0}^{n-1} \lambda(p_i, p'_i) \mod 2 \quad \text{Binary function}$$

 \longrightarrow $P \perp P'$ if $\lambda(P, P') = 0$ and $P \not\perp P'$ if $\lambda(P, P') = 1$

Pauli tableau / Pauli frame

----- Use this compact representation to represent Cliffords

 $U \in Cliffords, P \in Paulis \implies UPU^{\dagger} \in Paulis$

Clifford = {CNOT, H, S}

	j	$U^{\dagger}Z_{j}U$	$U^{\dagger}X_{j}U$	$U^{\dagger}Y_{j}U$
-	0	Z_0	$X_0 X_1$	Y_0X_1
	1	Z_0Z_1	X_1	Z_0Y_1
L				
_			γ	

Compact representation of a Clifford unitary $U = CNOT_{0,1}$

Pauli tableau / Pauli frame

------ Use this compact representation to represent Cliffords

 $U \in Cliffords, P \in Paulis \implies UPU^{\dagger} \in Paulis$

Compact representation of a Clifford unitary $U = CNOT_{0,1}$

Pauli tableau / Pauli frame

→ Use this compact representation to represent Cliffords

 $U \in Cliffords: P \in Paulis \implies UPU^{\dagger} \in Paulis$

Clifford = {CNOT, H, S}

$$\begin{pmatrix} Z_0 & X_0 X_1 \\ Z_0 Z_1 & X_1 \end{pmatrix}$$

Pauli tableau / Pauli frame

• n - qubit Clifford is represented by a $(n \times 2)$ Pauli frame

$$F = \begin{pmatrix} \text{eff} Z_0 & \text{eff} X_0 \\ \vdots & \vdots \\ \text{eff} Z_{n-1} & \text{eff} X_{n-1} \end{pmatrix}$$

Respect the follwing commutativity relations:

$$\lambda(\text{eff}Z_i, \text{eff}Z_j) = \lambda(\text{eff}X_i, \text{eff}X_j) = 0 \quad \text{commute}$$

$$\lambda(\text{eff}Z_i, \text{eff}X_j) = \lambda(\text{eff}X_j, \text{eff}Z_i) = \delta_{i,j} \quad \text{anti-commute}$$

Pauli tableau / Pauli frame

• n - qubit Clifford is represented by a $(n \times 2)$ Pauli frame

A lookup action on F on $P = \alpha(p_0, ..., p_{k-1})$ written $\vec{F}(P)$, is given by:

 $\overrightarrow{F}(\alpha(p_0,\ldots,p_{n-1})) = \alpha \prod_j \operatorname{eff} p_j$

with $\operatorname{eff} I_j = I$ and $\operatorname{eff} Y_j = \operatorname{eff} Z_j \odot \operatorname{eff} X_j$

For every Pauli frame *F* there is a Clifford unitary U^F unique up to an overall phase satisfying $\vec{F}(P) = (U^F)^{\dagger} P U^F$ for any Pauli *P*.

 \longrightarrow The semantics of a Pauli frame is given by the Pauli map: $[F](Q) = U^F Q(U^F)^{\dagger}$

Types of PCOAST nodes and the PCOAST data structure

 $\llbracket n \rrbracket : \mathcal{P}_k \to \mathbf{CQ}$

PCOAST nodes as Pauli maps (can be lifted to cq-channels)

$$\mu:\mathcal{M}_1\to\mathcal{M}_2$$

Measurement space functions are direcly defined as cq-channels

PCOAST data structures

PCOAST graph G = (V, E)

Exemplary PCOAST graph

- Directed acyclic graph with **vertices** *V* **that are PCOAST nodes**
- For any nodes n_1 and n_2 that **do not commute**, there is a **edge** from n_1 to n_2 or vice versa
- There are no edges between commuting vertices

PCOAST optimization techniques

Compiling circuits to PCOAST graphs Internal optimization on PCOAST graphs Synthesizing circuits from PCOAST graphs (depending on whether *hold* or *release* is chosen)

Performance Evaluation: Gate count vs. Compile time

Evaluated against Qiskit and t|ket>: reduces **total gate count** by 32.53% and 33.33% on average, **two-qubit gates** by 29.22% and 20.58%, and **circuit depth** by 42.02% and 51.27%.

Summary

- **A novel optimization framework** for mixed unitary and non-unitary quantum circuits is presented.
- Adapts the **commutativity properties** of Cliffords and Pauli strings to preparation and measurement gates in the PCOAST graph.
- Good performance is shown by evaluation against Qiskit and t[ket).
- Implemented as core optimization of the Intel SDK, it can be enabled via the (-O1) flag.

Thank you!

Are there any questions?

carla.sophie.rieger@cern.ch

