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The PCOAST framework - in a nutshell
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- Toolchain for Pauli-based Cirucit Optimization, Analysis and Synthesis.

- Based on commutative properties of Pauli strings.                     
(Recall: unitary circuits can be decomposed into Clifford and non-Clifford 
gates represented by Pauli rotations)

- Technique is adapted to mixed unitary and non-unitary circuits.
Paykin, Jennifer, et al. "PCOAST: a Pauli-based 
quantum circuit optimization framework." 2023 IEEE 
International Conference on Quantum Computing 
and Engineering (QCE). Vol. 1. IEEE, 2023.



Local, 
peephole-style 

optimization

Global 
optimizations

- Replace local patterns
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- Simplify IR according to 
structural rules

- Synthesize circuit back

26.09.24 QTI - Journal Club - Carla Rieger (CERN, TUM) 3

Distinguishing 
optimization procedures

Paykin, Jennifer, et al. "PCOAST: a Pauli-based 
quantum circuit optimization framework." 2023 IEEE 
International Conference on Quantum Computing 
and Engineering (QCE). Vol. 1. IEEE, 2023.



Local, 
peephole-style 

optimization

Global 
optimizations

- Convert circuit to 
intermediate mathematical 
representation (IR)

- Simplify IR according to 
structural rules

- Synthesize circuit back The circuit structure 
may be significantly 
different from the 
original 

- Replace local patterns
- General circuit 

structure is preserved

26.09.24 QTI - Journal Club - Carla Rieger (CERN, TUM) 4

Distinguishing 
optimization procedures

Paykin, Jennifer, et al. "PCOAST: a Pauli-based 
quantum circuit optimization framework." 2023 IEEE 
International Conference on Quantum Computing 
and Engineering (QCE). Vol. 1. IEEE, 2023.



Local, 
peephole-style 

optimization

Global 
optimizations

- Convert circuit to 
intermediate mathematical 
representation (IR)

- Simplify IR according to 
structural rules

- Synthesize circuit back

PCOAST

- Replace local patterns
- General circuit 

structure is preserved

26.09.24 QTI - Journal Club - Carla Rieger (CERN, TUM) 5

Distinguishing 
optimization procedures

The circuit structure 
may be significantly 
different from the 
original 

Paykin, Jennifer, et al. "PCOAST: a Pauli-based 
quantum circuit optimization framework." 2023 IEEE 
International Conference on Quantum Computing 
and Engineering (QCE). Vol. 1. IEEE, 2023.



Full PCOAST optimization pass
PrepZ RX(✓1) RX(✓2) RX(✓3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, ✓1) Measc1(Z0)

F = �
Z0X1 Z1

Z0 X0Z1
�Rot(Z1, ✓3) Rot(X0, ✓2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, ✓1)
and Rot(X0, ✓2) combine to Rot(X0, ✓1 + ✓2), and Rot(Z1, ✓3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable c1
has been transformed into a measurement of the first qubit, Z0, due
to the permutations of Clifford gates (F ) past the measurement.
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′
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(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement node
Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measurements
can be reconstructed by measuring X1 and combining the outcomes with the
measurement of Z0 classically. The measurement results of the optimized
graph is guaranteed to produce the same probability distribution as Fig. 1b.
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PrepZ RY(−⇡
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(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes
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Pauli measurements
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Pauli rotations
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Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t�ket� [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t�ket� respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.
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Operate over mixed classical-quantum states (cq-states)
 

II. BACKGROUND

Quantum states are represented as density matrices ⇢: pos-
itive semi-definite, Hermitian complex matrices with trace 1.
Unitary transformations act on them via conjugation: U⇢U

†. A
density matrix is called a pure state if it can be written as the
outer product of two state vectors ��� ���. If not, it is a mixed
state and can be written as the weighted sum of pure states,
representing a probability distribution over pure states. The
behavior of a quantum circuit can be described as a function
over density matrices known as a quantum channel [18].

A. The Pauli group
A single-qubit Pauli p is one of X , Y , Z, or I , where

X = �
0 1
1 0
� Y = �

0 −i

i 0
� Z = �

1 0
0 −1

� (1)

X , Y , and Z are Hermitian, meaning that pp = I , and satisfy
XY Z = i. A consequence is that any two single-qubit Paulis
either commute (written p1 � p2), meaning p1 ⋅ p2 = p2 ⋅ p1; or
anticommute (p1 �� p2), meaning p1 ⋅ p2 = −p2 ⋅ p1. We write

�(p1, p2) =

�
��
�
��
�

0 p1 � p2

1 p1 �� p2
(2)

An n-qubit Pauli P = ↵(p0, . . . , pn−1) ∈ Pn is the tensor
product of n single-qubit Paulis scaled by ↵ ∈ {1,−1, i,−i}.
Its support, supp(P ), is the set of indices for which pi ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}, and thus
the Pauli string X0Z2 refers to (X,I,Z).

Multiplication can be lifted to n-qubit Paulis as follows:

P1 ⋅ P2 = ↵1↵2�0��n−1(q0, . . . , qn−1) (3)

where Pi = ↵i(p
i
0, . . . , p

i
n−1) and p

1
i ⋅ p

2
i = �iqi. As a result,

n-qubit Paulis form a group with identity I = (I, . . . , I).
Commutativity can be lifted to n-qubit Paulis via a binary

function �(P,P
′
) ∈ {0,1} such that P ⋅P ′ = (−1)�(P,P ′)

P
′
⋅P :

�(↵(p0, . . . , pn−1),↵′(p′0, . . . , p′n−1)) = n−1�
i=0

�(pi, p′i) mod 2 (4)

We write P � P
′ if �(P,P ′) = 0 and P �� P

′ if �(P,P ′) = 1.
We are most interested in Hermitian Paulis where PP = I .

Since single-qubit Paulis are all Hermitian, an n-qubit Pauli is
Hermitian if and only if its coefficient is ±1. The Hermitian
product of Hermitian Paulis is P1 ⊙P2 = (−i)

�(P1,P2)P1 ⋅P2:
if P1 and P2 are both Hermitian, then so is P1 ⊙ P2.

III. SEMANTICS

As quantum channels, PCOAST nodes could be seen
as transformations on quantum states. However, because
PCOAST deals with mixed unitary and non-unitary circuits, it
also must account for transformations on classical states, for
example when writing measurement outcomes a classical reg-
isters. A classical state m is a finite sequence of assignments
of classical variables c to boolean values b ∈ {0,1}, written
c0 ← b0;�; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
referred to as a measurement space M.

A. Classical-quantum states
Instead of working with density matrices directly, we will

operate over mixed classical-quantum states [19, 20]. A cq-
state � ∈ CQM =M→ Cn×Cn, sometimes written m� �m, is
a function from a classical state m ∈M to the quantum state of
the system after the measurement outcome m is observed. The
quantum state �m is represented as a partial density matrix
�m, whose trace 0 ≤ tr(�m) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
the image of a cq-state is a full density matrix with trace 1.

As an example, the cq-state obtained from executing the
circuit PrepZ(0);H(0);MeasZc

(0) is m� 1
2 �m[c]� �m[c]�.

When it is clear from context, we write ⇢ for the constant
cq-state � ⇢. Scaling and summation of cq-states over the
same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
states. The hold relation completely preserves the quantum
state corresponding to every classical state, while the release
relation only requires that the probability of being in the same
state, tr(�i

m), is the same for each classical state m.

�
1
≡

hold
�
2
⇐⇒ ∀m ∈M, �

1
m = �

2
m (5)

�
1
≡

release
�
2
⇐⇒ ∀m ∈M, tr(�1

m) = tr(�2
m) (6)

In this context, the semantics of a quantum circuit C can
be described as a classical-quantum channel—a linear function
JCK ∶ CQM1 → CQM2 between cq-states, where M1 is the
set of states exectuion may be in before C, and M2 contains
the states the program may be in after executing C.

B. Sum-of-Pauli semantics
Classical-quantum channels will be used to describe the

behavior of circuits and PCOAST nodes on classical variables.
However, the majority of nodes do not affect classical states
at all. In that case, their behavior can be naturally described
as a Pauli map, a function from n-qubit Paulis to cq-states.
Intuitively, the quantum component of the input cq-state will
be decomposed into a sum of Pauli operators scaled by
arbitrary complex values, which we call Pauli vectors.

Lemma 1. Every 2n × 2n complex matrix A can be decom-
posed into a Pauli vector A = ∑i ↵iPi.

Multiplication of Pauli vectors, written v1 ⋅v2, and conjugate
transpose, v†, are defined in the expected way.

Definition 2. A Pauli map is a function f ∶ Pn → CQM from
n-qubit Paulis to cq-states. It can be lifted to a cq-channel
[f] ∶ CQM0 → CQM0+M as3

[f](�) =m0;m��
i

↵i�i(m) (7)

where �(m0) = ∑i ↵iPi and �i = f(Pi) ∈ CQM .

A Pauli vector v can be lifted to a Pauli map v
∗
(P ) = vPv

†,
called the conjugation action of v. Scaling (↵m) and addition
(v1 + v2) of Pauli maps are defined pointwise, and we say a

3M1 +M2 = {m1;m2 �mi ∈Mi}.
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Hermitian if and only if its coefficient is ±1. The Hermitian
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example when writing measurement outcomes a classical reg-
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c0 ← b0;�; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
referred to as a measurement space M.
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Instead of working with density matrices directly, we will
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a function from a classical state m ∈M to the quantum state of
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�m, whose trace 0 ≤ tr(�m) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
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When it is clear from context, we write ⇢ for the constant
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same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
states. The hold relation completely preserves the quantum
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relation only requires that the probability of being in the same
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at all. In that case, their behavior can be naturally described
as a Pauli map, a function from n-qubit Paulis to cq-states.
Intuitively, the quantum component of the input cq-state will
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arbitrary complex values, which we call Pauli vectors.
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transpose, v†, are defined in the expected way.
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Hold outcome:

- optimization preserves the 
semantics of the original circuit 
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Release outcome:

- More aggressive optimization 
can be applied

- Preserve same measurement 
result during the optimization 
strategy

- Drop unitary gates that can be 
delayed after the measurement

- Produce measurement results 
that are statistically equivalent 
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Commutativity of a Pauli 𝑝 given by:

II. BACKGROUND
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itive semi-definite, Hermitian complex matrices with trace 1.
Unitary transformations act on them via conjugation: U⇢U

†. A
density matrix is called a pure state if it can be written as the
outer product of two state vectors ��� ���. If not, it is a mixed
state and can be written as the weighted sum of pure states,
representing a probability distribution over pure states. The
behavior of a quantum circuit can be described as a function
over density matrices known as a quantum channel [18].
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X , Y , and Z are Hermitian, meaning that pp = I , and satisfy
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product of n single-qubit Paulis scaled by ↵ ∈ {1,−1, i,−i}.
Its support, supp(P ), is the set of indices for which pi ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}, and thus
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′ if �(P,P ′) = 1.
We are most interested in Hermitian Paulis where PP = I .

Since single-qubit Paulis are all Hermitian, an n-qubit Pauli is
Hermitian if and only if its coefficient is ±1. The Hermitian
product of Hermitian Paulis is P1 ⊙P2 = (−i)
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if P1 and P2 are both Hermitian, then so is P1 ⊙ P2.
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As quantum channels, PCOAST nodes could be seen
as transformations on quantum states. However, because
PCOAST deals with mixed unitary and non-unitary circuits, it
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example when writing measurement outcomes a classical reg-
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of classical variables c to boolean values b ∈ {0,1}, written
c0 ← b0;�; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
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Instead of working with density matrices directly, we will

operate over mixed classical-quantum states [19, 20]. A cq-
state � ∈ CQM =M→ Cn×Cn, sometimes written m� �m, is
a function from a classical state m ∈M to the quantum state of
the system after the measurement outcome m is observed. The
quantum state �m is represented as a partial density matrix
�m, whose trace 0 ≤ tr(�m) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
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When it is clear from context, we write ⇢ for the constant
cq-state � ⇢. Scaling and summation of cq-states over the
same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
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0 p1 � p2

1 p1 �� p2
(2)

An n-qubit Pauli P = ↵(p0, . . . , pn−1) ∈ Pn is the tensor
product of n single-qubit Paulis scaled by ↵ ∈ {1,−1, i,−i}.
Its support, supp(P ), is the set of indices for which pi ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}, and thus
the Pauli string X0Z2 refers to (X,I,Z).

Multiplication can be lifted to n-qubit Paulis as follows:

P1 ⋅ P2 = ↵1↵2�0��n−1(q0, . . . , qn−1) (3)

where Pi = ↵i(p
i
0, . . . , p

i
n−1) and p

1
i ⋅ p

2
i = �iqi. As a result,

n-qubit Paulis form a group with identity I = (I, . . . , I).
Commutativity can be lifted to n-qubit Paulis via a binary

function �(P,P
′
) ∈ {0,1} such that P ⋅P ′ = (−1)�(P,P ′)

P
′
⋅P :

�(↵(p0, . . . , pn−1),↵′(p′0, . . . , p′n−1)) = n−1�
i=0

�(pi, p′i) mod 2 (4)

We write P � P
′ if �(P,P ′) = 0 and P �� P

′ if �(P,P ′) = 1.
We are most interested in Hermitian Paulis where PP = I .

Since single-qubit Paulis are all Hermitian, an n-qubit Pauli is
Hermitian if and only if its coefficient is ±1. The Hermitian
product of Hermitian Paulis is P1 ⊙P2 = (−i)

�(P1,P2)P1 ⋅P2:
if P1 and P2 are both Hermitian, then so is P1 ⊙ P2.

III. SEMANTICS

As quantum channels, PCOAST nodes could be seen
as transformations on quantum states. However, because
PCOAST deals with mixed unitary and non-unitary circuits, it
also must account for transformations on classical states, for
example when writing measurement outcomes a classical reg-
isters. A classical state m is a finite sequence of assignments
of classical variables c to boolean values b ∈ {0,1}, written
c0 ← b0;�; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
referred to as a measurement space M.

A. Classical-quantum states
Instead of working with density matrices directly, we will

operate over mixed classical-quantum states [19, 20]. A cq-
state � ∈ CQM =M→ Cn×Cn, sometimes written m� �m, is
a function from a classical state m ∈M to the quantum state of
the system after the measurement outcome m is observed. The
quantum state �m is represented as a partial density matrix
�m, whose trace 0 ≤ tr(�m) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
the image of a cq-state is a full density matrix with trace 1.

As an example, the cq-state obtained from executing the
circuit PrepZ(0);H(0);MeasZc

(0) is m� 1
2 �m[c]� �m[c]�.

When it is clear from context, we write ⇢ for the constant
cq-state � ⇢. Scaling and summation of cq-states over the
same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
states. The hold relation completely preserves the quantum
state corresponding to every classical state, while the release
relation only requires that the probability of being in the same
state, tr(�i

m), is the same for each classical state m.

�
1
≡

hold
�
2
⇐⇒ ∀m ∈M, �

1
m = �

2
m (5)

�
1
≡

release
�
2
⇐⇒ ∀m ∈M, tr(�1

m) = tr(�2
m) (6)

In this context, the semantics of a quantum circuit C can
be described as a classical-quantum channel—a linear function
JCK ∶ CQM1 → CQM2 between cq-states, where M1 is the
set of states exectuion may be in before C, and M2 contains
the states the program may be in after executing C.

B. Sum-of-Pauli semantics
Classical-quantum channels will be used to describe the

behavior of circuits and PCOAST nodes on classical variables.
However, the majority of nodes do not affect classical states
at all. In that case, their behavior can be naturally described
as a Pauli map, a function from n-qubit Paulis to cq-states.
Intuitively, the quantum component of the input cq-state will
be decomposed into a sum of Pauli operators scaled by
arbitrary complex values, which we call Pauli vectors.

Lemma 1. Every 2n × 2n complex matrix A can be decom-
posed into a Pauli vector A = ∑i ↵iPi.

Multiplication of Pauli vectors, written v1 ⋅v2, and conjugate
transpose, v†, are defined in the expected way.

Definition 2. A Pauli map is a function f ∶ Pn → CQM from
n-qubit Paulis to cq-states. It can be lifted to a cq-channel
[f] ∶ CQM0 → CQM0+M as3

[f](�) =m0;m��
i

↵i�i(m) (7)

where �(m0) = ∑i ↵iPi and �i = f(Pi) ∈ CQM .

A Pauli vector v can be lifted to a Pauli map v
∗
(P ) = vPv

†,
called the conjugation action of v. Scaling (↵m) and addition
(v1 + v2) of Pauli maps are defined pointwise, and we say a

3M1 +M2 = {m1;m2 �mi ∈Mi}.
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When it is clear from context, we write ⇢ for the constant
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state corresponding to every classical state, while the release
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However, the majority of nodes do not affect classical states
at all. In that case, their behavior can be naturally described
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Intuitively, the quantum component of the input cq-state will
be decomposed into a sum of Pauli operators scaled by
arbitrary complex values, which we call Pauli vectors.
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either commute (written p1 � p2), meaning p1 ⋅ p2 = p2 ⋅ p1; or
anticommute (p1 �� p2), meaning p1 ⋅ p2 = −p2 ⋅ p1. We write

�(p1, p2) =

�
��
�
��
�

0 p1 � p2

1 p1 �� p2
(2)

An n-qubit Pauli P = ↵(p0, . . . , pn−1) ∈ Pn is the tensor
product of n single-qubit Paulis scaled by ↵ ∈ {1,−1, i,−i}.
Its support, supp(P ), is the set of indices for which pi ≠ I .
We write Xi, Yi, and Zi for Paulis with support {i}, and thus
the Pauli string X0Z2 refers to (X,I,Z).

Multiplication can be lifted to n-qubit Paulis as follows:

P1 ⋅ P2 = ↵1↵2�0��n−1(q0, . . . , qn−1) (3)

where Pi = ↵i(p
i
0, . . . , p

i
n−1) and p

1
i ⋅ p

2
i = �iqi. As a result,

n-qubit Paulis form a group with identity I = (I, . . . , I).
Commutativity can be lifted to n-qubit Paulis via a binary

function �(P,P
′
) ∈ {0,1} such that P ⋅P ′ = (−1)�(P,P ′)

P
′
⋅P :

�(↵(p0, . . . , pn−1),↵′(p′0, . . . , p′n−1)) = n−1�
i=0

�(pi, p′i) mod 2 (4)

We write P � P
′ if �(P,P ′) = 0 and P �� P

′ if �(P,P ′) = 1.
We are most interested in Hermitian Paulis where PP = I .

Since single-qubit Paulis are all Hermitian, an n-qubit Pauli is
Hermitian if and only if its coefficient is ±1. The Hermitian
product of Hermitian Paulis is P1 ⊙P2 = (−i)

�(P1,P2)P1 ⋅P2:
if P1 and P2 are both Hermitian, then so is P1 ⊙ P2.

III. SEMANTICS

As quantum channels, PCOAST nodes could be seen
as transformations on quantum states. However, because
PCOAST deals with mixed unitary and non-unitary circuits, it
also must account for transformations on classical states, for
example when writing measurement outcomes a classical reg-
isters. A classical state m is a finite sequence of assignments
of classical variables c to boolean values b ∈ {0,1}, written
c0 ← b0;�; cn−1 ← bn−1. The boolean value associated with a
variable is written m[c], and a finite set of classical states is
referred to as a measurement space M.

A. Classical-quantum states
Instead of working with density matrices directly, we will

operate over mixed classical-quantum states [19, 20]. A cq-
state � ∈ CQM =M→ Cn×Cn, sometimes written m� �m, is
a function from a classical state m ∈M to the quantum state of
the system after the measurement outcome m is observed. The
quantum state �m is represented as a partial density matrix
�m, whose trace 0 ≤ tr(�m) ≤ 1 corresponds to the probability
of observing m. The sum of all the partial density matrices in
the image of a cq-state is a full density matrix with trace 1.

As an example, the cq-state obtained from executing the
circuit PrepZ(0);H(0);MeasZc

(0) is m� 1
2 �m[c]� �m[c]�.

When it is clear from context, we write ⇢ for the constant
cq-state � ⇢. Scaling and summation of cq-states over the
same measurment space is defined pointwise.

PCOAST utilizes two different equivalence relations on cq-
states. The hold relation completely preserves the quantum
state corresponding to every classical state, while the release
relation only requires that the probability of being in the same
state, tr(�i

m), is the same for each classical state m.

�
1
≡

hold
�
2
⇐⇒ ∀m ∈M, �

1
m = �

2
m (5)

�
1
≡

release
�
2
⇐⇒ ∀m ∈M, tr(�1

m) = tr(�2
m) (6)

In this context, the semantics of a quantum circuit C can
be described as a classical-quantum channel—a linear function
JCK ∶ CQM1 → CQM2 between cq-states, where M1 is the
set of states exectuion may be in before C, and M2 contains
the states the program may be in after executing C.

B. Sum-of-Pauli semantics
Classical-quantum channels will be used to describe the

behavior of circuits and PCOAST nodes on classical variables.
However, the majority of nodes do not affect classical states
at all. In that case, their behavior can be naturally described
as a Pauli map, a function from n-qubit Paulis to cq-states.
Intuitively, the quantum component of the input cq-state will
be decomposed into a sum of Pauli operators scaled by
arbitrary complex values, which we call Pauli vectors.

Lemma 1. Every 2n × 2n complex matrix A can be decom-
posed into a Pauli vector A = ∑i ↵iPi.

Multiplication of Pauli vectors, written v1 ⋅v2, and conjugate
transpose, v†, are defined in the expected way.

Definition 2. A Pauli map is a function f ∶ Pn → CQM from
n-qubit Paulis to cq-states. It can be lifted to a cq-channel
[f] ∶ CQM0 → CQM0+M as3

[f](�) =m0;m��
i

↵i�i(m) (7)

where �(m0) = ∑i ↵iPi and �i = f(Pi) ∈ CQM .

A Pauli vector v can be lifted to a Pauli map v
∗
(P ) = vPv

†,
called the conjugation action of v. Scaling (↵m) and addition
(v1 + v2) of Pauli maps are defined pointwise, and we say a

3M1 +M2 = {m1;m2 �mi ∈Mi}.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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𝑈 ∈ 𝐶𝑙𝑖𝑓𝑓𝑜𝑟𝑑𝑠, 𝑃 ∈ 𝑃𝑎𝑢𝑙𝑖𝑠 ⟹ 𝑈𝑃𝑈! ∈ 𝑃𝑎𝑢𝑙𝑖𝑠

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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𝑈 ∈ 𝐶𝑙𝑖𝑓𝑓𝑜𝑟𝑑𝑠: 𝑃 ∈ 𝑃𝑎𝑢𝑙𝑖𝑠 ⟹ 𝑈𝑃𝑈! ∈ 𝑃𝑎𝑢𝑙𝑖𝑠

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
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��
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1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
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�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).
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PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.
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=
1
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((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=
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Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
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2Q(I + (−1)
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P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
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†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U
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†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :
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Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0
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effZn−1 effXn−1
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The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
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Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written
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F (P ), is the product of the effective entry of each pj :
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effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .
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unitary U

F , unique up to overall phase, satisfying
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5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
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Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
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Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)
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Pauli tableau / Pauli frame
𝑛 - qubit Clifford is represented by a (𝑛	𝑥	2)	Pauli frame

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.
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mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Respect the follwing commutativity relations:

commute

anti-commute
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Pauli tableau / Pauli frame
𝑛 - qubit Clifford is represented by a (𝑛	𝑥	2)	Pauli frame

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.

718

Authorized licensed use limited to: CERN. Downloaded on September 25,2024 at 08:43:38 UTC from IEEE Xplore.  Restrictions apply. 

P � n

Rot(P, ✓) � n

P1 � n P2 � n

Prep(P1, P2) � n

P � n

Measc(P ) � n

F ○ F ′ = F ′ ○ F
F � F ′

n not a Pauli frame n � F

F � n

µ � Rot(P, ✓) µ � F µ � Prep(P1, P2)
Fig. 3: Definition of n1 � n2 indicating when two PCOAST
nodes commute. These definitions, given as inference rules, are
understood as follows: the conclusion below the line holds if
and only if all the hypotheses above the line hold.

Definition 10. The semantics of a Pauli frame is given by the
Pauli map JF K(Q) = UF

Q(U
F
)

†.

The frame F
U associated with a Clifford unitary U is

effpF
U

j = U
†
pjU, (19)

where effpFj is entry of F corresponding to pj . We refer to
F

I as the origin frame.
A consequence of the commutativity rules for frames is that

the lookup action preserves commutativity and composition.

�(
�→
F (P ),

�→
F (Q)) = �(P,Q) (20)
�→
F (PQ) =

�→
F (P )

�→
F (Q) (21)

Definition 11. Composition of Pauli frames F2 ○F1 is defined
as effpF2○F1

i =
�→
F1(effpF2

i ). It satisfies U
F2○F1 = U

F2U
F1 .

B. PCOAST Terms

A PCOAST term t is a sequence of PCOAST nodes
n0; . . . ;nk−1 with 1 indicating the empty sequence. The se-
mantics of nodes can be lifted to terms JtK ∶ CQ → CQ.

We define an equivalence relation on PCOAST terms pa-
rameterized by a hold or release outcome o, corresponding to
the two equivalence relations on cq-states.

t1 ≡
o
t2 ⇐⇒ ∀�, Jt1K(�) ≡o Jt2K(�) (22)

If not specified, we assume o is the stronger hold outcome.
Intuitively, two PCOAST nodes commute exactly when

their underlying Paulis commute. Formally, Fig. 3 defines a
commutativity relation n � n

′ between nodes, aided by a
helper relation Q � n (Fig. 4) that indicates when a Pauli
commutes with a PCOAST node.

Theorem 12. If n1 � n2 then n1;n2 ≡ n2;n1.7

7Note that this property does not hold in the other direction; the rules for
n1 � n2 are strictly more restrictive. In particular, the relation is not reflexive
on Prep(PZ , PX) since PZ �� PX .

Q � P

Q � Rot(P, ✓)
�→
F (Q) = Q
Q � F

Q � P1 Q � P2

Q � Prep(P1, P2)
Q � P

Q �Measc(P ) Q � µ

Fig. 4: Definition of Q � n, when a Pauli Q commutes with a
PCOAST node n. Recall that for two Paulis, we write P1 � P2

if and only if �(P1, P2) = 0.

C. The PCOAST Graph

Definition 13. A PCOAST graph G = (V,E) is a directed
acyclic graph whose vertices V are PCOAST nodes. For any
nodes n1 and n2 that do not commute, there is either an edge
from n1 to n2 or vice versa (but not both). There are no edges
between commuting vertices.

As an example, in Fig. 1c there are edges from both
measurement nodes to the the measurement space function
node µ, but there are no edges to the Pauli frame F

′ because
both Z0 and X1 commute with F

′.
Every topological ordering of a PCOAST graph G cor-

responds to a PCOAST term t
G. Even though topological

orderings of a graph are not unique, they are equivalent to
each other due to Thm. 12: if two vertices do not commute,
there is an edge between them in one direction or the other,
and that edge will be preserved by the topological ordering.

PCOAST graphs satisfy three key invariants: frame-
terminal, measurement-space terminal, and fully merged.

1) Frame-terminal graphs: A PCOAST graph is called
frame-terminal when it contains a single Pauli frame node,
and that frame has no outgoing edges. It is always possible to
construct a frame-terminal graph because a Pauli frame F can
be commuted past any other node n by transforming n into a
new node

�→
F (n) that satisfies F ;n ≡

�→
F (n);F .

�→
F (n) =

�
����������
�
����������
�

F
−1
○ F

′
○ F n = F

′
Rot(
�→
F (P ), ✓) n = Rot(P, ✓)

Prep(
�→
F (PZ),

�→
F (PX)) n = Prep(PZ , PX)

Measc(
�→
F (P )) n =Measc(P )

µ n = µ

(23)

2) Measurement-space terminal graph: Similarly, a graph
is called measurement-space terminal when it contains at
most one measurement space function node, and that node
has no outgoing edges. Since frames and measurement space
functions always commute, this does not conflict with the
graph being frame-terminal. To construct a measurement-
space-terminal graph, it suffices to push all measurement space
nodes past measurement nodes via the equivalence

µ;Measc(P ) ≡Measc
′
(P );µ′ (24)

where c
′ is fresh and µ

′
(m) =m; c←m(c

′
).
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A lookup action on 𝐹 on 𝑃 = 𝛼(𝑝!, … , 𝑝$%#) written �⃗�(𝑃), is given by:

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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with and

For every Pauli frame 𝐹 there is a Clifford unitary 𝑈&unique up to an 
overall phase satisfying �⃗� 𝑃 = 𝑈& ' 𝑃 𝑈& for any Pauli 𝑃.

The semantics of a Pauli frame is given by the Pauli map:
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Types of PCOAST nodes and 
the PCOAST data structure

PrepZ RX(✓1) RX(✓2) RX(✓3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, ✓1) Measc1(Z0)

F = �
Z0X1 Z1

Z0 X0Z1
�Rot(Z1, ✓3) Rot(X0, ✓2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, ✓1)
and Rot(X0, ✓2) combine to Rot(X0, ✓1 + ✓2), and Rot(Z1, ✓3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable c1
has been transformed into a measurement of the first qubit, Z0, due
to the permutations of Clifford gates (F ) past the measurement.

Prep(Z0,X0) Rot(X0, ✓1 + ✓2) Measc
′
1(Z0) F

′
= �

Z0 X0

Y1 X1
�

Prep(Z1,X1) Measc
′
0(X1)

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement node
Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measurements
can be reconstructed by measuring X1 and combining the outcomes with the
measurement of Z0 classically. The measurement results of the optimized
graph is guaranteed to produce the same probability distribution as Fig. 1b.

PrepZ RX(✓1 + ✓2) MeasZc′1

PrepZ RY(−⇡
2 ) MeasZc′0

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes

Measurement
space

functions
µ ∶M1 →M2

Quantum gates

Pauli preparations
Prep(PZ , PX)

Pauli measurements
Measc(P )

Unitary gates

Pauli rotations
Rot(P, ✓) = e−i ✓

2P

Clifford gates
Paulis

X0Z1Y3

Pauli frames
F ∶ P → P

Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t�ket� [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t�ket� respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.

2https://developer.intel.com/quantumsdk
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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PCOAST nodes as Pauli maps
(can be lifted to cq-channels)

Measurement space functions are 
direcly defined as cq-channels

PrepZ RX(✓1) RX(✓2) RX(✓3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, ✓1) Measc1(Z0)

F = �
Z0X1 Z1

Z0 X0Z1
�Rot(Z1, ✓3) Rot(X0, ✓2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, ✓1)
and Rot(X0, ✓2) combine to Rot(X0, ✓1 + ✓2), and Rot(Z1, ✓3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable c1
has been transformed into a measurement of the first qubit, Z0, due
to the permutations of Clifford gates (F ) past the measurement.

Prep(Z0,X0) Rot(X0, ✓1 + ✓2) Measc
′
1(Z0) F

′
= �

Z0 X0

Y1 X1
�

Prep(Z1,X1) Measc
′
0(X1)

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement node
Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measurements
can be reconstructed by measuring X1 and combining the outcomes with the
measurement of Z0 classically. The measurement results of the optimized
graph is guaranteed to produce the same probability distribution as Fig. 1b.

PrepZ RX(✓1 + ✓2) MeasZc′1

PrepZ RY(−⇡
2 ) MeasZc′0

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes

Measurement
space

functions
µ ∶M1 →M2

Quantum gates

Pauli preparations
Prep(PZ , PX)

Pauli measurements
Measc(P )

Unitary gates

Pauli rotations
Rot(P, ✓) = e−i ✓

2P

Clifford gates
Paulis

X0Z1Y3

Pauli frames
F ∶ P → P

Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t�ket� [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t�ket� respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.

2https://developer.intel.com/quantumsdk
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PCOAST data structures

26.09.24 QTI - Journal Club - Carla Rieger (CERN, TUM) 17

Pauli rotation

Pauli preparation

Pauli measurement

Measurement space functions

Pauli frames

Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
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1
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=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.
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�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
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�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
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†
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Yj . For example, the inverse conjugation of U = CNOT0,1 is
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†
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XjU U

†
YjU
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†
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†
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†
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column stores U
†
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Z0Z1 X1
� (14)
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†
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written
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where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
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F (P ) =

(U
F
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PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.
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PrepZ RX(✓1) RX(✓2) RX(✓3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, ✓1) Measc1(Z0)

F = �
Z0X1 Z1

Z0 X0Z1
�Rot(Z1, ✓3) Rot(X0, ✓2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, ✓1)
and Rot(X0, ✓2) combine to Rot(X0, ✓1 + ✓2), and Rot(Z1, ✓3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable c1
has been transformed into a measurement of the first qubit, Z0, due
to the permutations of Clifford gates (F ) past the measurement.

Prep(Z0,X0) Rot(X0, ✓1 + ✓2) Measc
′
1(Z0) F

′
= �

Z0 X0

Y1 X1
�

Prep(Z1,X1) Measc
′
0(X1)

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement node
Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measurements
can be reconstructed by measuring X1 and combining the outcomes with the
measurement of Z0 classically. The measurement results of the optimized
graph is guaranteed to produce the same probability distribution as Fig. 1b.

PrepZ RX(✓1 + ✓2) MeasZc′1

PrepZ RY(−⇡
2 ) MeasZc′0

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes

Measurement
space

functions
µ ∶M1 →M2

Quantum gates

Pauli preparations
Prep(PZ , PX)

Pauli measurements
Measc(P )

Unitary gates

Pauli rotations
Rot(P, ✓) = e−i ✓

2P

Clifford gates
Paulis

X0Z1Y3

Pauli frames
F ∶ P → P

Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t�ket� [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t�ket� respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.

2https://developer.intel.com/quantumsdk
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
�
��
�

1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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Pauli map acts on a Pauli vector by mapping it over every
Pauli in the vector: m(∑i ↵iPi) = ∑i ↵im(Pi).

IV. PCOAST DATA TYPES

PCOAST uses five types of nodes for different sorts of gates:
● Pauli rotations Rot(P, ✓) for non-Clifford unitaries e−i✓�2P
● Pauli preparations Prep(P1, P2)

● Pauli measurements Measc(P )
● Measurement space functions µ

● Pauli frames F for Clifford unitaries
The semantics of PCOAST nodes are defined as Pauli maps
JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.

Definition 3. A Pauli rotation Rot(P, ✓) consists of a Her-
mitian Pauli P on k qubits and a real number ✓ ∈ R. The
semantics of a Pauli rotation JRot(P, ✓)K is given by the
conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)

[Rot(P, ✓)] = e−i✓�2P = cos ( ✓2)I + i sin ( ✓2)P (9)

Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
pair of non-commutative Hermitian Paulis.

JPrep(PZ , PX)K(Q)

=
1

4
((I + PZ)Q(I + PZ) + PX(I − PZ)Q(I − PZ)PX)

=

�
��
�
��
�

Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
(10)

Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
Hermitian Pauli acting as a measurement operator.

JMeasc(P )K(Q) =m�
�
��
�
��
�

1
4(I + P )Q(I + P ) m[c] = 0
1
4(I − P )Q(I − P ) m[c] = 1

= c← b�

�
��
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1
2Q(I + (−1)

b
P ) �(P,Q) = 0

0 �(P,Q) = 1
(11)

As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U

†
XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =
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�
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effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
�

�

�

(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written
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F (P ), is the product of the effective entry of each pj :
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where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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which are defined as cq-channels directly.
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conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)
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subspaces of PZ and, if -1 is obtained, applies PX . As an
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As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:

JµK(�) =m2 � �

m1∈µ−1(m2)
�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on

a Pauli P by conjugation, the result UPU
† is still a Pauli. A

Pauli frame5 is a compact representation of a Clifford unitary
defined by that conjugation—or more precisely, its inverse
conjugation U

†
PU—on every base Pauli string Zj , Xj , and

Yj . For example, the inverse conjugation of U = CNOT0,1 is

j U
†
ZjU U
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XjU U

†
YjU

0 Z0 X0X1 Y0X1

1 Z0Z1 X1 Z0Y1

(13)

It suffices to store only the first two columns of this table: we
can derive U

†
YjU = −i(U

†
ZjU)(U

†
XjU) since Y = −iZX .

Thus, an n-qubit Clifford is represented by an n × 2 Pauli
frame, where the first column stores U

†
ZjU and the second

column stores U
†
XjU :

�
Z0 X0X1

Z0Z1 X1
� (14)

Note that whether we store U
†
PU or UPU

† in the entries
of the Pauli frame is a matter of style—the inverse of a
Pauli frame can always be calculated to obtain one from
the other [17]. However, the choice affects the efficiency of
the lookup operation

�→
F (Defn. 8 below). For efficiency in

PCOAST, the lookup operation should implement the opposite
of the semantic interpretation JF K(Q) = UQU

† (Defn. 10).

Definition 7. A Pauli frame F on k qubits is a k × 2 array of
Hermitian k-qubit Paulis:

F =

�

�

�

effZ0 effX0

⋮ ⋮

effZn−1 effXn−1
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(15)

The arguments in the first column are called the effective Zj

Paulis, and the arguments in the second column the effective
Xj Paulis, and they must respect all the same commutativity
relations as the corresponding Zj and Xj Paulis:

�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :
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F (↵(p0, . . . , pn−1)) = ↵�
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effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.
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● Pauli preparations Prep(P1, P2)
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JnK ∶ Pk → CQ, except for measurement space functions,
which are defined as cq-channels directly.
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conjugation action of its corresponding unitary, [Rot(P, ✓)]:4

JRot(P, ✓)K(Q) = [Rot(P, ✓)]Q[Rot(P,−✓)] (8)
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Definition 4. A Pauli preparation Prep(PZ , PX) consists of a
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=
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Q(I + PZ) �(Q,PZ) = �(Q,PX) = 0

0 otherwise
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Intuitively, Prep(PZ , PX) collapses the state in the eigen-
subspaces of PZ and, if -1 is obtained, applies PX . As an
example, Prep(Zi,Xi) prepares the ith qubit in the Z basis.

Definition 5. A Pauli measurement Measc(P ) consists of a
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As an example, Measc(Zi) measures qubit i in the Z basis.
c is the classical register in which measurement is recorded.

Definition 6. A measurement space function µ ∶M1 →M2 is
a function between two measurement spaces. It is interpreted
as a cq-channel JµK ∶ CQM1 → CQM2 as follows:
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�m1 . (12)

As an example, in the circuit Prep(Zi,Xi);Measc(Zi), the
measurement can be optimized away, yielding Prep(Zi,Xi);µ
where µ(m) =m; c← 0.

4Recall, if the classical state is not specified, it is assumed to be the constant
cq-state � ⇢.

A. Pauli Frames
Clifford unitaries satisfy the property that when acting on
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† is still a Pauli. A
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defined by that conjugation—or more precisely, its inverse
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�(effZi, effZj) = �(effXi, effXj) = 0 (16)
�(effZi, effXj) = �(effXj , effZi) = �i,j

6 (17)

Definition 8. The lookup action of F on P = ↵(p0, . . . , pk−1),
written

�→
F (P ), is the product of the effective entry of each pj :

�→
F (↵(p0, . . . , pn−1)) = ↵�

j

effpj (18)

where effIj = I and effYj = effZj ⊙ effXj .

Lemma 9. For every Pauli frame F there is a Clifford
unitary U

F , unique up to overall phase, satisfying
�→
F (P ) =

(U
F
)

†
PU

F for any Pauli P .
5Pauli tableaus [15] were first introduced as a way to simulate stabilizer

states generated entirely from Clifford gates and single-qubit measurements.
Since then, Pauli tableaus have been used to represent Clifford circuits in
general, not just for the purposes of stabilizer simulation. Following [13, 21],
in this work we refer to Pauli tableaus as Pauli frames to emphasize their
linear algebraic structure with regards to the Pauli group.

6�i,j is 0 if i = j and 1 otherwise.
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PCOAST graph
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- Directed acyclic graph with vertices 𝑽 that are PCOAST nodes

- For any nodes 𝑛# and 𝑛( that do not commute, there is a edge 
from 𝑛# to 𝑛( or vice versa 

- There are no edges between commuting vertices

PCOAST graph 𝐺 = (𝑉, 𝐸)

PrepZ RX(✓1) RX(✓2) RX(✓3) MeasZc0

PrepZ H MeasZc1

(a) Example circuit. The c argument in MeasZc indicates the
classical variable that the measurement outcome is written to.

Prep(Z0,X0) Rot(X0, ✓1) Measc1(Z0)

F = �
Z0X1 Z1

Z0 X0Z1
�Rot(Z1, ✓3) Rot(X0, ✓2)

Prep(Z1,X1) Measc0(Z0X1)

(b) The PCOAST graph generated by the example circuit. The
groupings indicate nodes to be merged together, where Rot(X0, ✓1)
and Rot(X0, ✓2) combine to Rot(X0, ✓1 + ✓2), and Rot(Z1, ✓3) is
absorbed by Prep(Z1,X1). Note that the measurement to variable c1
has been transformed into a measurement of the first qubit, Z0, due
to the permutations of Clifford gates (F ) past the measurement.

Prep(Z0,X0) Rot(X0, ✓1 + ✓2) Measc
′
1(Z0) F

′
= �

Z0 X0

Y1 X1
�

Prep(Z1,X1) Measc
′
0(X1)

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(c) The optimized PCOAST graph obtained when specifying a release
outcome. The optimization has reduced the support of the measurement node
Meas(Z0X1) to Meas(X1) by recognizing that the Z0X1 measurements
can be reconstructed by measuring X1 and combining the outcomes with the
measurement of Z0 classically. The measurement results of the optimized
graph is guaranteed to produce the same probability distribution as Fig. 1b.

PrepZ RX(✓1 + ✓2) MeasZc′1

PrepZ RY(−⇡
2 ) MeasZc′0

µ = c0 ← c
′
0;

c1 ← c
′
0 + c

′
1

(d) Optimized released circuit synthesized from Fig. 1c, along with assign-
ments to classical variables to account for the release outcome optimization.

Fig. 1: PCOAST optimization on an example circuit.

nodes, they commute with each other. In addition to the uni-
tary Pauli rotations, our PCOAST graph contains non-unitary
gates—preparation and measurement—that are parameterized
by Pauli rotations and are subject to the same commutativity
rules as rotations. To represent Cliffords, we use a compact
representation as a Pauli frame F , otherwise known as a Pauli
tableau [15], which emphasizes the behavior of the Clifford
on Pauli arguments (Sec. IV-A). A summary of different types
of nodes is shown in Fig. 2.

The addition of these non-unitary nodes enables a host of
additional internal optimizations on PCOAST graphs. Users
can choose between two optimization outcomes: either a hold
outcome, where the optimizations preserve the semantics of
the original circuit precisely; or a release outcome, where
more aggressive optimizations can be applied as long as they
produce the same measurement results. A release outcome will
drop unitary gates that can be delayed until after measurement,
with the guarantee that the measurement results will always be
statistically equivalent. To achieve this, we introduce classical

PCOAST nodes

Measurement
space

functions
µ ∶M1 →M2

Quantum gates

Pauli preparations
Prep(PZ , PX)

Pauli measurements
Measc(P )

Unitary gates

Pauli rotations
Rot(P, ✓) = e−i ✓

2P

Clifford gates
Paulis

X0Z1Y3

Pauli frames
F ∶ P → P

Fig. 2: Types of PCOAST nodes in relation to each other.
Note that Paulis themselves are not nodes, but are represented
in PCOAST as Pauli frames.

remappings of measurement variables via what we call mea-
surement space functions. For example, if a release outcome is
specified for Fig. 1, it will be optimized to the PCOAST graph
as shown in Fig. 1c using the measurement space function
given in the bottom right.

Finally, we adapt Schmitz et al. [13]’s synthesis algorithm
to determine both how to order commuting nodes, and how
to decompose multi-qubit nodes using sequences of two-
qubit entangling gates. The result is shown in Fig. 1d. We
customize the synthesis algorithm with a number of heuristics
to minimize cost according to a given cost model, map into
a target gate set, and reduce the number of measurements
required for a stabilizer search. Currently, synthesis primarily
aims to minimize algorithm-level resource requirements like
circuit depth, although the design allows for customization to
prioritize other search criteria.1

This work makes the following contributions:

● We develop a semantics in which to describe the behavior
of PCOAST nodes, terms, and graphs that incorporates
both classical and quantum states.

● We introduce the key PCOAST data structures, including
Pauli frames and the PCOAST graph.

● We present three major components of the PCOAST
optimization: compiling a circuit to a PCOAST graph,
optimizing the graph, and synthesizing a circuit back out.

● We implement PCOAST in C++ as a sequence of com-
piler passes in the Intel® Quantum Software Development
Kit (SDK)2 [16], and evaluate its compilation perfor-
mance against two state-of-the-art optimizing quantum
compilers, Qiskit [7] and t�ket� [10]. Our experimental
results show that PCOAST reduces total gate count by
32.53% and 33.33% on average, compared to the best
performance achieved by Qiskit and t�ket� respectively,
two-qubit gates by 29.22% and 20.58%, and circuit depth
by 42.02% and 51.27%.

An extended version of this paper gives full proofs for all
lemmas and theorems [17].

1The full implications of such customization, including hardware-aware
layout, routing, and scheduling, are beyond the scope of this paper.

2https://developer.intel.com/quantumsdk
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PCOAST optimization techniques

Compiling circuits to PCOAST graphs

Internal optimization on PCOAST graphs

Synthesizing circuits from PCOAST graphs 
(depending on whether hold or release is chosen)
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Performance Evaluation: 
Gate count vs. Compile time

Fig. 11: Normalized gate counts vs. compile time for each framework to evaluate the scalability across different benchmarks.

shows the results of these modifications. We see that by
fine-tuning the cost function, we are able to achieve better
performance in all cases, where PCOASTFT reduces the gate
count by 50.33%, 38.24%, and 76.82% for the respective
workloads, as compared to PCOAST1.

Our empirical analysis reveals that setting the parallelization
credit less than 0.1 tends to achieve the best results. As we
increase its value beyond 1, performance plateaus due to the
dominance of the parallelization part of the cost function.

Overall, PCOASTFT reduces total gate count, two-qubit
gates, and depth by 16.79%, 20.5%, and 11.28% respec-
tively compared to PCOAST1, and by 32.53%(43.33%),
29.22%(20.58%), and 42.05%(51.27%) compared to the best
Qiskit (t�ket�) performance across all benchmarks.

D. Scalability
Ref [17] argues that the complexity of PCOAST’s search

algorithm is O(N3
�G�

2
), where N is the number of qubits

and �G� the number of nodes. Table I shows that PCOAST
can be applied to circuits with up to 100 qubits. To gain a
comprehensive understanding of scalability and quality, we
compared compilation time and performance (gate count)
across various toolchains (Fig. 11), revealing that PCOAST’s
scalability is superior to other frameworks. Its data points
consistently reside in the lower left region, indicating better
results, with a few exceptions in HEA.

VII. RELATED WORK

Global quantum circuit optimizations, such as phase poly-
nomials [31, 32, 6, 33], the ZX-calculus [34, 35, 36, 12],
Pauli strings [14], and Pauli rotations [11, 13], leverage
mathematical structures to reduce gate count. Most focus
on unitary optimizations, with the exception of some ZX
variants [37, 36]. Most similar to PCOAST graphs is [11]’s
DAGs of Pauli rotations and [12]’s ZX-based Pauli gadgets.
Both overlap with Sec. V-A when restricted to unitary gates,
but neither use Pauli frames to represent Cliffords, nor address
efficient Pauli gadget synthesis. With ZX-based approaches
in particular, optimizations must maintain a “circuit-like”
form, as not all ZX diagrams can be directly synthesized
into gates [34, 36, 38]. In contrast, all PCOAST nodes are
synthesizable, as synthesis is built into the framework itself.

Bottom-up synthesis methods construct parameterized cir-
cuits by iteratively adding gates and using numerical optimiza-
tion algorithms for parameter determination [39, 40, 41, 42].

Compilation algorithms like QGo [43] and QUEST [44] lever-
age bottom-up synthesis for larger circuits, though scalability
remains a concern because their search space increases expo-
nentially with circuit size. In contrast, PCOAST scales well to
large circuits, as demonstrated in Sec. VI-D.

Schmitz et al. [13] and Li et al. [14] both address circuit
synthesis from Pauli strings in the context of Hamiltonian
simulation. [13] is the basis of the PCOAST synthesis algo-
rithm, extended to support non-unitary gates and custom cost
functions that allow the ultra-greedy search to be fine-tuned. Li
et al. incorporate hardware-aware optimization and scheduling
passes into Hamiltonian synthesis and, though out of scope of
this work, we will extend PCOAST search functions with such
hardware-aware considerations in the near future.

VIII. CONCLUSION

PCOAST is a novel optimization framework for mixed
unitary and non-unitary quantum circuits that adapts the com-
mutativity properties of Cliffords and Pauli strings to prepa-
ration and measurement gates in the PCOAST graph. Internal
optimizations simplify the graph depending on whether the
quantum state needs to be preserved (hold) or can be released
(release) after circuit execution. Finally, a customizable greedy
search algorithm finds an efficient gate implementation for the
optimized PCOAST graph.

Implemented in the Intel Quantum SDK, PCOAST signif-
icantly reduces gate count, two-qubit gates, and depth in key
benchmarks. With minor tuning, it reduces total gate count
by between 32% (resp. 43%) two-qubit gates by 29% (21%),
and depth by 42% (51%) compared to the best performance of
Qiskit (resp. t�ket�). On applications for quantum chemistry,
it reduces gate count by 79% (62%), two-qubit gates by 77%
(54%), and depth by 85% (76%).

The framework leaves many avenues for future work.
PCOAST can be used as an IR beyond circuit conversion for
Hamiltonian simulation [13] and higher-order circuit trans-
formations [45]. Future internal optimizations could include
more advanced unitary optimizations such as singlet node
to factor node merging and incorporating other representa-
tions like phase polynomials into PCOAST. For synthesis,
immediate next steps will adapt state-of-the-art methods for
limited connectivity in NISQ architectures by incorporating
connectivity and noise into the search functions.
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Evaluated against Qiskit and t∣ket⟩: reduces total gate count 
by 32.53% and 33.33% on average, two-qubit gates by 29.22% 
and 20.58%, and circuit depth by 42.02% and 51.27%.
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Summary
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- A novel optimization framework for mixed unitary and non-unitary 
quantum circuits is presented.

- Adapts the commutativity properties of Cliffords and Pauli strings to 
preparation and measurement gates in the PCOAST graph.

- Good performance is shown by evaluation against Qiskit and t∣ket⟩.

- Implemented as core optimization of the Intel SDK, it can be enabled via 
the (-O1) flag.
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Thank you!
Are there any questions?

carla.sophie.rieger@cern.ch


