
New INDIGO IAM 
Dashboard

Jacopo Gasparetto
INFN 

INDIGO IAM Technical Hackathon @ CERN 
10-13 February 2025



Outline

● New Dashboard
○ Motivation
○ Introduction
○ Architecture
○ Technologies
○ Authentication/Authorization
○ Development Status
○ Live Demo

● Introduction to End-to-End testing
○ Live Demo (?)

● Introduction to telemetry
○ Key concepts
○ Instrumentation
○ Deployment strategies
○ Live Demo



New IAM Dashboard



Motivation

● Current dashboard is based on JavaServer Pages (JSP) and Angular.js which 
is in EOL since January 2022

● Drop deprecated libraries in order to increase security (mandatory to use IAM 
on Italian projects)

● Decouple the frontend logic from the login service (backend)
● Modern web development
● Lightweight and responsive
● Customization (anyone can fork and extended/modify the dashboard with for 

needs)



IAM Dashboard: a Next.js/React web application

● The new IAM Dashboard is a web application written in TypeScript on top of the Next.js 
framework, the official framework indicated by the React developers.

● React vs Next.js
○ React is a library that allows the development of reusable web “reactive components”. It embraces the 

declarative paradigm: the user interacts with the dashboard changing some states, and the components react 
(update) accordingly to the new state

○ Next.js is a framework with a huge set of features. Among these, Next.js allows the development of a Server 
Side Rendering based web server with a Backend For Frontend (BFF) model.

● In other words, the new IAM Dashboard is a Next.js application whose components are 
written in React.

● In this context, the new IAM Dashboard is both a Node.js web server which servers static 
and dynamically rendered content (compiled html, js and css) AND a real API that the 
browser interacts with.

https://nextjs.org/docs

https://nextjs.org
https://react.dev
https://nextjs.org/docs


Technologies
The dashboard relies on few third party libraries chosen because of their 
popularity, support and consistency

Tool Description

Next.js v15 Server Side Rendering Framework

React v19 UI components

Tailwind CSS v5 CSS and styling

Heroicons v2 (by Tailwind) Icons

Headless UI v2 (by Tailwind) Unstylized component library for React

Auth.js v5 OIDC/OAuth2 library for web applications

OpenTelemetry Telemetry (metrics, traces)

Cypress v14 (TDB) End to end testing framework

https://nextjs.org
https://react.dev
https://tailwindcss.com
https://heroicons.com
https://headlessui.com
https://authjs.dev
https://opentelemetry.io
https://www.cypress.io


General Architecture: Backend For Frontend (BFF)

INDIGO IAM login 
service (API)

Web server
(SSR)

Internal API
(BFF)

SSR = Server Side 
Rendering

Browser

GET /users/me
(HTML, JS, CSS)
(Cookie session AuthN)

POST /groups
Create a New Group
(Cookie session AuthN)

Next.js app
User’s Access Token

1. When the user asks for a page, the BFF queries the IAM 
login service API using the user’s Access Token (AT)

2. IAM login service API returns the JSON payload to 
Next.js

3. Next.js renders the page with the data received by IAM 
login service and returns it to the user’s browser

● The browser NEVER connects directly to IAM login 
service.

● Each request from the browser to the IAM login service 
API is proxied by the BFF which injects the user’s AT as 
HTTP authentication header

● The distinction between Web server and BFF is purely 
logical and is completely transparent to developer



Authentication/Authorization

● The dashboard (BFF) is a IAM 
registered OIDC/OAuth2 client with 
Authorization Code Flow

● The dashboard asks IAM login 
service for an access token in behalf 
of the user

● The dashboard associates the AT to 
the user and stores it somewhere

● The dashboard (BFF) uses the AT to 
perform requests to the protected 
IAM login service APIs

Dashboard Authorize Endpoint Token Endpoint API

(1) GET Request for Auth Code

(2) POST Request for Access Token

Auth Code

Access Token (and Refresh Token)

(3) HTTP Request for a Resource w/Access Token as authorization header

Resource Content (e.g, user’s profile)

Authorization Server Resource Server

INDIGO IAM

OAuth2 Authorization Code flow (PKCE is not shown in figure)

In the OAuth2 language, IAM login service plays both the roles of an Authorization Server (AT issuer) and a 
Resource Server (who owns the protected resources, i.e, APIs)



Authentication/Authorization

● IAM issues a token that the dashboard 
sends back to query the protected 
resources (IAM APIs)

● The dashboard needs to use a 
privileged IAM client credential
○ E.g., iam:admin.write/read 

and scim:write/read
● Authorization (Admin vs User) is 

capability/scope based
● Admin/scim scopes are filtered by IAM 

login service policies for non admin 
users (since v1.11.0)

● All operations of non admin users rely 
on Me endpoints



Authentication/Authorization: how users log in

● Authentication via OpenID/OAuth2 is provided by the Auth.js library

● When the user lands on the dashboard, the application looks for a session cookie. If 
the cookie is missing or expired, users are redirected to the IAM login service 
/authorize endpoint passing parameters such as the redirect uri (the dashboard 
endpoint), required scopes and client id

● Users log in within the IAM login service page as usual

● After authentication, users are redirected back to the dashboard, which completes 
the Authorization Flow receiving the access token and verifying it

● Then, the BFF sends a session cookie to the browser which sends it back to the 
BFF at each request. The cookie identifies the user with a session id and somehow 
we need to store the AT and associate it with that session id

https://authjs.dev


Authentication/Authorization: where do we store the 
token?
● Where to store the token and what to do with it depends on the developer
● There are two main approaches

○ Saving the Access Token within the (encrypted) cookie payload
○ Storing the Access Token into an external database

● Saving the AT inside the cookie is straightforward and almost cost-free. The token is 
actually stored on the user’s browser local storage and sent back to the BFF for each 
request. It is considered less safe because if the cookie is stolen, a bad actor 
can gain access to the resources.

● Saving the AT on database is more secure because it is never exposed to the 
browser. On the other hand, the complexity is much higher (custom automations 
need to be implemented to clean the database of expired tokens while maintaining the 
association between session user ID and valid access token). In case of several 
replicas, the database must be synchronized among all replicas.

Auth.js official docs highly discourage to store Refresh Tokens within the session cookie but considers the storage of the 
Access Token acceptable. For a better overview about the session strategies consult the official guide.

https://authjs.dev/concepts/session-strategies


Development Status

● Most of the current features have 
been successfully implemented

● Final User Interface and User 
Experience (UI/UX) not yet 
defined

● Changes to improve UI/UX are 
still under investigation

● Code review needed
● End to end tests are being 

written to increase coverage
● We hope to receive feedback 

from the users! Starting from this 
Hackathon :)



Live Demo



End to end testing



How to test a web application? End to end testing

● In the context of web applications, end-to-end (E2E) testing translates to simulating 
the human interaction with the interface, such as mouse clicks, typing, scrolls, etc. 
The definition “end-to-end” means that the entire chain of services composing the 
application is tested:

○ when a button is clicked, the event is sent down to the BFF, then to the API, the database and 
back to the web application that displays the result.

● We need to robotize the browser so that it performs a given set of instructions that 
mimic the human interactions

● Tests must be executed in a Continuous Integration (CI) pipeline

● Several frameworks exist, such as Cypress and Playwright

● We chose Cypress but we are still open to try Playwright as alternative

https://www.cypress.io
https://playwright.dev


Example of basic E2E test

● Log in using a predefined set of 
credentials

● Click “Add new group”, a popup 
opens

● Type the group name

● Click “Add group” button

● In the search bar, type the name of 
just created group

● Click “delete group”

Example of E2E test made with Cypress



Introduction to telemetry



Introduction to telemetry: OpenTelemetry

From the official documentation

OpenTelemetry is:
● An observability framework and toolkit designed to create and manage 

telemetry data such as traces, metrics, and logs.
● Not an observability backend like Jaeger, Prometheus, or other commercial 

vendors.
● …

OpenTelemetry is collection of components that provide an SDK (Software Development Kit) 
to enrich an existing code base to emit telemetry data.

OpenTelemetry does not store any data per se and some kind of database(s) is(are) needed

https://opentelemetry.io/docs/what-is-opentelemetry/


Telemetry data: Traces, Metrics and Logs

Telemetry data is generally grouped in three main entities, or signals: traces, metrics and logs.

● traces: represent the path of a request through an application. They are made up by spans 
that represent the single units of work or operation. Each span has start and end 
timestamps, a name, a parent id (if child of another span) and attributes. A typical 
trace/span information answers “how much time this function took to execute?” and “what is 
the runtime call stack at this endpoint?”

● metrics: represent the measurement emitted by a meter. Meters can typically be 
monotonic/non-monotonic counters, histograms and gauges. In the physical world “3 kWh at 
2025-02-10 12:00” is the metric produced by the electricity meter (monotonic) of our house. An 
example could be: “how many requests we received so far at each endpoint?”

● logs: timestamped text record, either structured or unstructured, with optional metadata. We 
do not deal with telemetry logs, as they could easily be written with a simple access/error 
logger

https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/traces/#spans


OpenTelemetry: Instrumentation

● The process of augmenting our codebase to emit telemetry data is called 
instrumentation. This means that we are adding code to our existing code.

● OpenTelemetry has SDKs for basically every language on the market.
● For some high level languages, such has JavaScript/TypeScript, OpenTelemetry 

offers the so called Zero-code Instrumentation feature that enables telemetry with 
just a couple of lines of configuration.

● For other languages such as C++, there is no automatic instrumentation and the 
codebase must be manually instrumented at each function of interest and it is up 
to the developer to choose what they want to monitor.

https://opentelemetry.io/docs/zero-code/


Instrumenting a Next.js application

● Next.js offers a modified package for OpenTelemetry which does the entire magic.
● It enables basic telemetry for traces only.
● It is still possible to have a finer grained control about where to put spans and 

metrics in your codebase



Collect telemetry data

● An application can be made up of several components (micro-services), each sending 
telemetry data from different endpoint but still logically representing the same application. For 
example, a trace with its root span can be opened by a NGINX reverse proxy that proxies the 
request to an API. It is important to reconstruct those traces to understand the complete path 
of the request.

● An application can have manyfold replicas, each sending telemetry data.
● Due to the nature of the data, different signals (traces, metrics and logs) must be stored on 

different kind of databases. They can also be sent through different protocols (http, gRPC, 
kafka, ect.).

● OpenTelemetry offers a service called OpenTelemetry Collector which receives, processes 
and then exports telemetry data to the appropriate backends.

https://opentelemetry.io/docs/collector/


Collect telemetry data: case study

● For our case study, we choose Prometheus as metrics backend and Grafana Tempo as traces 
backend

● Grafana is then used as web application to visualize KPIs, stats and plots
● A particular useful feature of Grafana Tempo is its built-in metrics generator which produces new 

metrics from the traces, such as the total count of requests and the latency histogram

IAM Dashboard

IAM Login Service

Other services

OpenTelemetry 
Collector

Prometheus

GrafanaGrafana Tempo

Grafana Loki

traces, metrics and logs

traces, metrics and logs

metrics

traces

logs

metrics

traces

logs

Metrics generated from traces

https://prometheus.io
https://grafana.com/docs/tempo/latest/
https://grafana.com/grafana/


Live Demo



Conclusion

● The core architecture has been successfully built
● Results look promising and we can close the “proof of concept” phase
● Many UI/UX decision still need to been taken yet (we would love to receive 

feedback from users)
● Several minor bugs have to be fixed
● Telemetry has been proven to be a great tool to inspect, monitor and debug 

IAM dashboard and we would like to implement it also in IAM login service 
codebase


