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[ brief History

@ Serious activity on Deep Learning
applications at LHC started around
2015

® Series of workshops to reach out
Al experts outside HEP and start
col laborations

® Several proof-of-principle studies

® Heavy R&D activity since then, with
young and enthusiastic community
growing year by year

® By now, DL 1s established 1n our
data processing and analysis
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@ What Do we Use DU for

@ Better solutions: 1n typical
“offline environment” (aka data
analysis), DL 1s used to 1mprove
signal-to-background
discrimination

® Regression, (Classification,
Anomaly Detection

@ Faster solutions: 1n most CPU-
heavy processes (pattern
recognition, clustering,
generation) and downstream tasks,
we have robust solutions to our
problem. DL 1s mostly used as an
approximation of these solutions,
which could run faster
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® LHC produces O(10)M collisions/sec
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v  Big Data sizes in 2021 &

5 100 T objects stored

® Each collision 1s 0O(1) MB : nsswo i cun_ g

140 M hours/day
iM of streaming (1 GB)

® The largest data stream humankind ever: s
handled

240k photos/min. 500 EB
shared in 2021 (to “’"

60kB spam (2 MB)
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® Events selected 1n a two-tier data m  spom 1.1k Paly i @
processing system, which selects which w ° 7§ - mm i
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(FPGAs), responds within O(1) us ° source

® Second layer on CPU farm (GPU
accelerated 1n certain experiments),

responds within 0(100) ms

100 KHz

@ Bringing DL closer to the detector
provides a fast-to-execute high-
complexity solution for a better decision




It started with DM /CMAMN
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® Replaced BDTs with more powerful NNs
acting on high-level features. Not
always big 1mprovements (BDTs good
enough often)
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@® Moved to more RAW data representations o e B B T R U
[Translated] Pseudorapidity (n) [Translated] Pseudorapidity (n)
@ formatting our data as i1mages -> CNN PP———

Which Energy?

@ formatting our data as sequences -> ' S N A
RNN/LMST/GRU
-
® Seen improvements, but still Timited by =1 l=| = =
the need to hammer our data 1nto a data bl BB |E D
representation that was not natural . SIS |88 IS )

@ Lost 1nformation 1n the process




< Qur Data Are Polnt Clouds
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® Our data are effectively point
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&) Qur Data Are Polwnt Clouds
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® Our data are effectively point —— DNN: AUC = 0.9459  0.0005
clouds e X oo
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® S1nce then, several works showed .. // .
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@® Now, Graph Nets are the paradigm
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9 Accelerating DL inference

® For us, it is crucial to be able to bring DL as TensorFlow
close as possible to the detector EiL) Goprotsasing i
. hls 4 ml
@0Only in CMS, ~ 20 projects of DNNs for first-
tier hardware trigger for CMS upgrade i HLS _)‘
conversion Custom f.irmware
® In lack of solutions compatible with our Usual mochins learning " i
ultrafast latency constraints, we developed an \fejgf/
in-house solution il
(A) Classification (B) Regression
® We managed to speed NN inference to 0(100) sec — ersscontncns
for various architectures, including some | e
graph networks w —
@ Plans for a more generic support of Graph Nets £ ol
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