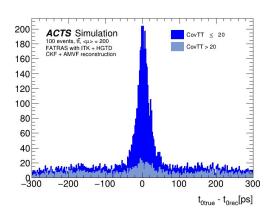
HL-LHC ATLAS 4D tracking Project schedule and GNN reconstruction

Rodrigo Estevam de Paula

Marco Aurelio Lisboa Leite

Vitor Heloiz Nascimento

1 October, 2024



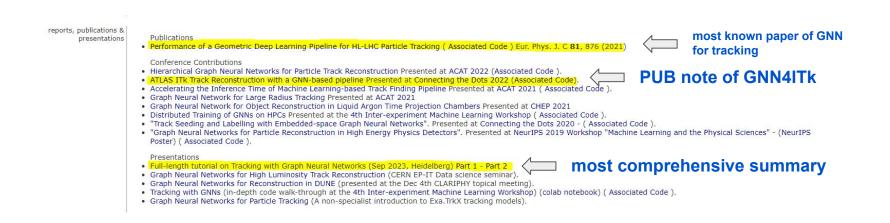
Feedbacks on previous presentation

Feedback:

- Quantify vertices out of the $\pm \sigma$ in the t_0 reconstruction
 - Compare the bulk of the distribution to the tails
- Evaluate vertex reconstruction residue in function of the multiplicity

Next steps:

- Evaluate the track efficiency of the proposed reconstruction
 - Need to isolate HGTD track-hit association efficiency
- Get up-to-date sensor degradation information
 - Already talking to the sensor group to get it
- Optional: Simulate TDC digitization and uncertainty?


Revisiting the schedule

Atividade	S.1	S.2	S.3	S.4	5.5	S.6	S.7	S.8	S.9	S.10
Disciplinas do Programa da Pós-Graduação										
Revisão da Literatura										
Familiarização com os frameworks de reconstrução e análise										
Implementação dos modelos GNN em reconstrução 3D										
Preparação para o exame de qualificação										
Implementação e dos modelos GNN em reconstrução 4D										
Introdução da informação de ToT e degradação do sinal dos sensores no modelo										
Implementação dos métodos em arquiteturas heterogêneas CPU+GPU										
Estudo do desempenho da reconstrução (incerteza sistemática, eficiência, desempenho computacional)										
Estágio no CERN (atividades no HGTD e estudos de reconstrução e validação)										
Preparação da Defesa										

- We're ≈ 9 months ahead companies
- There are still plenty of ACTS to uncover, but we need to start shifting gears
- Need to start discussing the implementation of new reconstruction methods

Research on new methods

- The most prolific collaboration searching for new methods inside ATLAS is the GNN4ITk
 - Don't know of any other
- GNN4ITk acts as an extension of the Exa.trk collaboration (<u>web page</u>) to apply their solution for ITk
- Would recommend the following readings:

Exa.Trk plugin on ACTS

- ACTS has a plugin to use Exa.Trk GNN reconstruction.
 - Almost sure not adapted to 4D reconstruction as we want

 \cap

TO DOs

- To make the plugin work, I'll have to install CUDA
 - If there's no nvidia card, will have to search for another machine to run with (lxplus?)
- Study the implementation
- Compare the performance with CKF
- How to include time information?

```
from acts.examples.reconstruction import addExaTrkX,
ExaTrkXBackend
if backend == ExaTrkXBackend.Torch:
    modelDir = Path.cwd() / "torchscript models"
    assert (modelDir / "embed.pt").exists()
    assert (modelDir / "filter.pt").exists()
    assert (modelDir / "gnn.pt").exists()
    modelDir = Path.cwd() / "onnx_models"
    assert (modelDir / "embedding.onnx").exists()
    assert (modelDir / "filtering.onnx").exists()
    assert (modelDir / "gnn.onnx").exists()
s = runDigitization(
    trackingGeometry,
    field,
    outputDir,
    digiConfigFile=digiConfigFile,
    particlesInput=inputParticlePath,
    outputRoot=True,
    outputCsv=True,
    S=S.
addExaTrkX(
    trackingGeometry,
    geometrySelection,
    modelDir.
    outputDir,
    backend=backend,
s.run()
```

Backup