

23/01/25

The Physics Case For a Short Baseline Beam at CERN

Cross-Section Measurements and BSM Physics

Filippo Bramati, Stephen Dolan, Laura Munteanu For the SBN@CERN Study Group

filippo.bramati@mib.infn.it; stephen.joseph.dolan@cern.ch; laura.munteanu@cern.ch

Oscillation experiments

Why do we care about systematics?

Current long-baseline experiments

Stephen Dolan

Why do we care about systematics?

<u>Current long-baseline experiments</u>

	TZK	NOVA
Baseline	295 km	800 km
N_{μ}^{rec} (v-mode)	318	384
Neec (v-mode)	94	181

Current systematic uncertainties

Uncertainty on N_e^{rec}	TZK	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Large contribution to syst. uncertainties from cross-section modelling

Syst. uncertainties remains small compared to stat. uncertainties

<u>Future long-baseline experiments</u>

		DUNE
Baseline	arXiv:1805.04163 295 km	arXiv:2002.03005 1300 km
N_{μ}^{rec} (v-mode)	~10000	~7000
N_e^{rec} (v-mode)	~2000	~1500

Current systematic uncertainties

Uncertainty on N_e^{rec}	TZ/K	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Future long-baseline experiments

		DUNE
Baseline	arXiv:1805.04163 295 km	arXiv:2002.03005 1300 km
N_{μ}^{rec} (v-mode)	~10000	~7000
N_e^{rec} (v-mode)	~2000	~1500

Current systematic uncertainties

Uncertainty on N_e^{rec}	TZK	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Large contribution to syst. uncertainties from cross-section modelling

Current syst. uncertainties are larger than projected stat. uncertainties

Improved understanding of neutrino interactions is necessary to avoid being prematurely limited by syst. uncertainties

Stephen Dolan

Future long-baseline experiments

Current systematic uncertainties

Large contribution to syst. uncertainties from cross-section modelling

A dedicated study should be set-up to evaluate the possible implementation, performance and impact of a percent-level electron and muon neutrino cross-section measurement facility (based on e.g. ENUBET or nSTORM) with conclusion in a few years time.

Improved understanding of neutrino interactions is necessary to avoid being prematurely limitation by syst. uncertainties

What do we need to know about neutrino interactions?

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors

Please find a detailed justification in the backup slides

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum

Please find a detailed justification in the backup slides

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation

Please find a detailed justification in the backup slides

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. NC π^0)
 - So we know how to interpret far detector event rates

Please find a detailed justification in the backup slides

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors

Stephen Dolan

2. The smearing of our neutrino energy reconstruction

• So we can infer the shape of the oscillated spectrum

Stephen Dolan

- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation

4. Backgrounds to what we see at the far detector (e.g. $NC\pi^0$)

So we know how to interpret far detector event rates

Stephen Dolan

Stephen Dolan

• Vibrant cross-section measurement program to constrain cross-section uncertainties

• Today's measurements are reaching a very high statistical precision (many millions of events!)

• Vibrant cross-section measurement program to constrain cross-section uncertainties

- Today's measurements are reaching a very high statistical precision (many millions of events!)
- But suffer from systematic uncertainties, often dominated by the flux

• Vibrant cross-section measurement program to constrain cross-section uncertainties

- Today's measurements are reaching a very high statistical precision (many millions of events!)
- And broad-band beams make measurements hard to interpret

Stephen Dolan

• Vibrant cross-section measurement program to constrain cross-section uncertainties

- Today's measurements are reaching a very high statistical precision (many millions of events!)
- So whilst plenty of measurements show our models are wrong ...

• Vibrant cross-section measurement program to constrain cross-section uncertainties

- Today's measurements are reaching a very high statistical precision (many millions of events!)
- So whilst plenty of measurements show our models are wrong ...
- ... they don't tell us why ...

• Vibrant cross-section measurement program to constrain cross-section uncertainties

- Today's measurements are reaching a very high statistical precision (many millions of events!)
- So whilst plenty of measurements show our models are wrong ...
- ... they don't tell us why ...

Another crucial gap: no experiment is well positioned to measure cross sections at DUNE energies on Ar

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. $NC\pi^0$)
 - So we know how to interpret far detector event rates

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. NC π^0)
 - So we know how to interpret far detector event rates

A short baseline experiment with a monitored neutrino beam offers a unique opportunity to tackle this! A short baseline monitored & tagged neutrino beam at CERN

Stephen Dolan

• Instrument decay tube to measure charged leptons from neutrino parentmeson decays → in-situ flux measurement → %-level uncertainties

See talk from A. Longhin *Eur. Phys. J. C* 83 (2023) 10, 964

- Also tag neutrino interactions in the detector to their parent's decay products → know neutrino energy event-by-event See talk from M. Perrin-Terrin Eur. Phys. J. C 84 (2024) 10, 1024
- A merge of ENUBET and Nutag proposals
 - Employ pixel detectors & calorimeter in the decay tube

	Parameter	Value
- 25	Primary proton energy	400 GeV/c
primary protone T1 T2 T3 T4	Beamline momentum (mesons)	up to 8.5 GeV/c
	Extraction type	Slow: 4.8s or 9.6s from the SPS
D_{1} π, K, Q_{4} Leas Beam	Spill intensity	1.0E13 protons/spill
p,e Spectromet	Event rate	1 – 2 THz
SPS	Instantaneous power	170 – 340 W
targe	K ⁺ / π^+ per proton	1.3E-3 / 1.9E-2
 Instrument decay tube to measure char 	K ⁺ / π^+ rate	up to 2.7 GHz / 40 GHz
meson decays \rightarrow in-situ flux measureme	Annualized proton requirement	2E18 – 3E18 protons/year
<i>ur. Phys. J. C</i> 83 (2023) 10, 964 • Also tag neutrino intera	Total proton requirement (1% stat. error on ve x-section)	1.4E19 PoT
$decay products \rightarrow kno'$	Beamline length to decay tube	23 m
See talk from M. Perrin-Terrin <i>Eur</i> .	Bending magnet strength	1.8 T

- A merge of **ENUBET** and **NuTag** proposals
 - Employ pixel detectors & calorimeter in the decay tube
- The SPS beam as the driver of the beamline has been identified as the only feasible option at CERN (see M. Jebramcik's talk)
 - Highly optimized beamline design for 400 GeV/c protons
- The beamline's meson production is maximized and the event rate is adjusted to meet the pile-up constraints of the NuTAG pixel detectors

Stephen Dolan

 Instrument decay tube to measure charged leptons from neutrino parentmeson decays → in-situ flux measurement → %-level uncertainties

See talk from A. Longhin *Eur. Phys. J. C* 83 (2023) 10, 964

- Also tag neutrino interactions in the detector to their parent's decay products → know neutrino energy event-by-event See talk from M. Perrin-Terrin Eur. Phys. J. C 84 (2024) 10, 1024
- A merge of ENUBET and Nutag proposals
 - Employ pixel detectors & calorimeter in the decay tube
 - The detector: large, O or Ar based, very close to the decay tube (<50 m)
 - High statistics, relevant energies, relevant targets
 - Spans a very wide range of off-axis angles (3-6°): sample different ν -fluxes

 Instrument decay tube to measure charged leptons from neutrino parentmeson decays → in-situ flux measurement → %-level uncertainties

See talk from A. Longhin *Eur. Phys. J. C* 83 (2023) 10, 964

- Also tag neutrino interactions in the detector to their parent's decay products → know neutrino energy event-by-event See talk from M. Perrin-Terrin Eur. Phys. J. C 84 (2024) 10, 1024
- A merge of **ENUBET** and **Nutag** proposals
 - Employ pixel detectors & calorimeter in the decay tube

SBN@CERN combines a monitored & tagged beam!

In the following slides we show performance studies, which focus on the physics reach of the monitored beam, before discussing what we gain from tagging

Reference set up See talk from M. Andre Jebramcik for details

- 8.5 GeV/c meson selection
- 500 ton LAr detector; 4x4 m² face;
 22.3 m length; 25 m from tube
- Collect 1.4×10¹⁹ PoT in ~5 years:
 - ~1.2M v_{μ} interactions
 - ~15k v_e interactions
- Projected event spectra estimated using GENIE
- Event spectra overlap well with Hyper-K and DUNE regions of interest

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. NC π^0)
 - So we know how to interpret far detector event rates

Narrow-band off-axis fluxes

- Measure the v_{μ} event rate in different 20 cm radial slides
- Probes different off-axis angles (0-4.5°)
- Accesses different energy spectra

Constraining energy dependence

- Measure the v_{μ} event rate in different 20 cm radial slides
- Probes different off-axis angles (0-4.5°)
- Accesses different energy spectra

Stephen Dolan

Constraining energy dependence

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. NC π^0)
 - So we know how to interpret far detector event rates

Constraining energy smearing

- Can make differential cross-section
 measurements at different off-axis angles
- Allows a profound exploration of crosssection modelling, can get at the physics responsible for neutrino energy smearing
- Expect %-level statistical uncertainties
- The monitored beam prevents syst uncertainties dominating Without this magsurements

Without this, the measurement would be systematics limited

Measurement projection offers clear separation between these two different GENIE simulations

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\overline{v})
 - So we can use v_e appearance to probe CP-violation
- 4. Backgrounds to what we see at the far detector (e.g. $NC\pi^0$)
 - So we know how to interpret far detector event rates

- ~15k v_e interactions is sufficient for a %-level cross-section measurement
 - Monitored beam is essential to control systematics

Stephen Dolan

- ~15k v_e interactions is sufficient for a %-level cross-section measurement
 - Monitored beam is essential to control systematics
- Even better: use PRISM to build a virtual v_e flux from the v_μ fluxes

- ~15k v_e interactions is sufficient for a %-level cross-section measurement
 - Monitored beam is essential to control systematics
- Even better: use PRISM to build a virtual v_e flux from the v_μ fluxes

• Directly measure v_e/v_μ ratio!

- ~15k v_e interactions is sufficient for a %-level cross-section measurement
 - Monitored beam is essential to control systematics
- Even better: use PRISM to build a virtual v_e flux from the v_μ fluxes
 - Directly measure v_e/v_{μ} ratio!
- Going even further, can measure v_e cross-section in kinematic regions that matter for v_e/v_μ ratio

Stephen Dolan

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation

4. Backgrounds to what we see at the far detector (e.g. NCπ⁰)
 • So we know how to interpret far detector event rates

Constraining far det. background

Make the same measurements, but for topologies that are backgrounds to oscillation analyses

Stephen Dolan

Constraining far det. background

- Make the same measurements, but for topologies that are backgrounds to oscillation analyses
- E.g. expect sub-5% measurements of NC π^0 cross section
 - c.f. current T2K uncertainty is 30%

Stephen Dolan

Eur. Phys. J. C 84 (2024) 10, 1024

Tagging features of SBN@CERN employing the NuTAG technique

See talk from M. Perrin-Terrin

Stephen Dolan

Stephen Dolan

Tagging with SBN@CERN?

- In a tagged neutrino beam we know E_{ν} independently from the interaction
 - Expect a sub-% resolution!
- Can directly measure:
 - The cross-section as a function of E_{ν}
 - The neutrino energy smearing function
 (compare reconstructed energy to true)
- Allows electron-scattering-like
 measurements with neutrinos!

Tagging with SBN@CERN?

See talk from M. Perrin-Terrin

- Expect a sub-% resolution!
- Can directly measure:
 - The cross-section as a function of E_{ν}
 - The neutrino energy smearing function
 (compare reconstructed energy to true)
- Allows electron-scattering-like measurements with neutrinos!
- Beyond neutrino energy smearing, neutrino tagging would be paradigm changing for nuclear physics measurements

BSM physics with SBN@CERN

- Beyond cross-section physics SBN@CERN would offer unique opportunities for BSM searches thanks to:
 - The extremely well controlled flux
- For a tagged beam: event-by-event energy + flavour measurement and v parent decay position

BSM physics with SBN@CERN

• Beyond cross-section physics SBN@CERN would offer unique opportunities for BSM searches thanks to:

BSM physics with SBN@CERN

• Beyond cross-section physics SBN@CERN would offer unique opportunities for BSM searches thanks to:

 Work to quantitatively assess sensitivity remains, but there are certainly promising prospects

Summary

- A detailed understanding of neutrino-nucleus interactions is crucial for current and future experiments to realise their extraordinary goals
 - As a community, if we do not take this problem seriously, we will be prematurely limited by systematic uncertainties
- The latest cross-section measurements have allowed us to make enormous progress, but beam width and flux uncertainties hinder their interpretation

A dedicated program at CERN offers an opportunity for Europe to **take the lead on confronting the challenges that will enable groundbreaking oscillation measurements** in the US and Japan

Summary

- A detailed understanding of neutrino-nucleus interactions is crucial for current and future experiments to realise their extraordinary goals
 - As a community, if we do not take this problem seriously, we will be prematurely limited by systematic uncertainties
- The latest cross-section measurements have allowed us to make enormous progress, but **beam width and flux uncertainties hinder their interpretation**
- SBN@CERN offers a unique possibility to constrain and cross-check crucial cross-sections for Hyper-K and DUNE
- Allows measurements tailored to confronting the key challenges:
 - Energy dependence of cross sections
 - Neutrino energy smearing
 - v_e/v_μ cross-section ratio
 - Constraints on far-detector backgrounds
- The tagged neutrino beam further opens the door to a range of game-changing measurements: electron-scattering physics w/ neutrinos!

Backups

Stephen Dolan

Stephen Dolan

Stephen Dolan

For a precision probe of oscillation parameters, reconstructing the shape of the oscillated spectrum is crucial

> What we can actually measure

Stephen Dolan

For a precision probe of oscillation parameters, reconstructing the shape of the oscillated spectrum is crucial

> What we can actually measure

Require a good control over cross section energy dependence and energy reconstruction!

Stephen Dolan

- For a precision probe of oscillation parameters, reconstructing the shape of the oscillated spectrum is crucial
- Require a good control over cross section energy dependence and energy reconstruction!
- Constraints on δ_{CP} rely on differences between electron neutrino and antineutrino appearance

- For a precision probe of oscillation parameters, reconstructing the shape of the oscillated spectrum is crucial
- Require a good control over cross section energy dependence and energy reconstruction!
- Constraints on δ_{CP} rely on differences between **electron neutrino and antineutrino appearance**
- But we mainly measure muon neutrino interactions at the near detector
- A good modelling of v_e/v_μ cross section ratio is essential

- For a precision probe of oscillation parameters, reconstructing the shape of the oscillated spectrum is crucial
- Require a good control over cross section energy dependence and energy reconstruction!
- Constraints on δ_{CP} rely on differences between electron neutrino and antineutrino appearance
- But we mainly measure muon neutrino interactions at the near detector
- A good modelling of v_e/v_μ cross section ratio is essential

- Background contributions are notnegligible (e.g. $NC\pi^0$ looking like v_e)
- A good modelling of non-oscillation backgrounds is needed

NBOA performance details

• Flux mean and 68% quartiles as a function of slice radius

NBOA performance details

- The plots show the flux mean and 68% quartiles as a function of slice radius
- The energy resolution from the flux width is also shown

Stephen Dolan

NBOA and DUNE PRISM

DUNE PRISM fluxes are typically wider than for SBN@CERN

The PRISM technique

• The idea: build virtual fluxes of a desired shape from linear combinations of real fluxes available at different off-axis angles

Ingredients:

Flux matrix F - an estimation of what flux distribution we will get for each off-axis angle

<u>Target flux</u> \vec{T} – a flux distribution we would like to approximate

Directions:

Solve $F\vec{c} = \vec{T}$ - find a solution that will give an approximation of our target as a linear combination of fluxes

Stephen Dolan