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Overview of the SHiP detector for SM 𝜈 and HS particles
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Designed for “zero background” in decay search
• Suppression of 𝜋/K decays by target design 
• Suppression of muons by magnetic shield
• Suppression of neutrino by decay volume under low air pressure
• Background veto taggers
• Momentum and decay vertex information
• Impact parameter at target
• Coincidence timing

• Invariant mass
• Particle identification

Not currently used in 
background suppression

by main tracker

➔ Very simple and common selection 

for both fully and partially 

reconstructed modes – model 

independence

➔ Redundant selection- Possibility to 

measure background with data by 

relaxing suppression techniques
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BDF/SHiP optimization of physics reach
• Target design for signal/background optimisation:

• Very thick → use full beam and secondary interactions (12𝛌)
• High-A&Z → maximise production cross-sections (Mo/W)
• Short 𝛌 (high density) → stop 𝜋/kaons before decay

➔BDF luminosity with the optimised target and 4x1019 protons on target 

per year currently available in the SPS
➔ BDF@SPS ℒ𝑖𝑛𝑡 𝑦𝑒𝑎𝑟

−1 = >4 x 1045 cm-2 (cascade not incl.)
➔ HL-LHC ℒ𝑖𝑛𝑡 𝑦𝑒𝑎𝑟

−1 = 1042 cm-2

➔BDF/SHiP annually access to yields towards detector acceptance:
• ∼ 2×1017 charmed hadrons  (>10 times the yield at HL-LHC)
• ∼ 2 × 1012 beauty hadrons
• ∼ 2×1015 tau leptons
• O(1020) photons above 100 MeV 

• Large number of neutrinos detected with 3t-W 𝜈-target:

3500 𝜈𝜏 + ҧ𝜈𝜏 per year,  and  2×105 𝜈𝑒 + ҧ𝜈𝑒 / 7×105 𝜈𝜇+ ҧ𝜈𝜇 despite target design

• Plan to operate beam and facility with 4x1019 protons/year for 15 years

σ(pp→ssbar X)/(pp→X) ~ 0.15
σ(pp→ccbar X )/(pp→X) ~ 2x10-3

σ(pp→bbbar X)/(pp→X) ~ 1.6 x10-7

Cascade effect, e.g. >2 for charm

BDF@ 𝑠 = 27 𝐺𝑒𝑉
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• ~3 years for detector Technical Design Reports 

• Facility implementation starting in Long Shutdown 3 of CERN’s accelerator complex

• Important to start data taking in 2032, ~2 year before Long Shutdown 4

➔ Complete detector at the latest in LS4 with initial configuration operating in 2032-2033
→ Objectives: commissioning facility/detector, performance, background measurements, physics in nominal conditions

→ Critical systems in full scale and full physics capability

→ Prototypes may fill “holes” in 2032-2033

BDF/SHiP schedule

LHC

SPS (North Area)

  Design and prototyping                         Production / Construction / Installation            Operation

Milestones BDF PRR CwB

Milestones SHiP PRR CwB

LS4

Complete detector / 

consolidation
TDR studies

BDF / SHiP

Run 3 LS3

TDR studies

2034 2035Accelerator schedule 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

Run 4

Approval for TDR
Facility TDR 
submission Experiment TDRs

submission

Facility 
commissioning

Experiment 
commissioning
initial configuration

➔ 15 years of physics exploration

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics
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SND detector embedded in the muon shield   
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Decay vessel

Decay vessel

SC magnet

SND

Fully warm magnet version 

SND requires a muon spectrometer (magnet) → embed it within the 

magnetised iron of the muon shield  

Fully warm version 

Ongoing R&D on SC 

magnet with HTS 

technology for a 

hybrid version 

SC magnet

Very compact detector



SND concept synergic with SND@LHC experiment → see C. Vilela’s talk 6

3 Scintillator planes as Veto system

Off-axis: 7.2 < η < 8.4

Target, Vtx and Ecal
830 kg tungsten target.
5 walls with 59 emulsion films
+ 5 SciFi stations. 84 X0, 3 λint

HCal and μ ID system

Iron blocks + scintillator planes.

Finer granularity downstream to 

track muons.   9.5 λint

Integrated luminosity so far 
(2022-2024): ~190 fb-1

JINST 19 (2024) 05, P05067

http://arxiv.org/abs/1804.04413, First paper on feasibility of studying neutrinos at LHC, Apr 2018

Physics potential of an experiment using LHC neutrinos, in 2019 

https://iopscience.iop.org/article/10.1088/1361-6471/ab3f7c/pdf
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Existing site: TI-18 tunnel 

- 480 from ATLAS IP1

http://arxiv.org/abs/1804.04413%20April%2012th%202018
https://iopscience.iop.org/article/10.1088/1361-6471/ab3f7c/pdf


July 2023

Muon tracks in 1 mm2
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𝜈 interaction with secondary vertex at the LHC

𝜈e-like candidate event

One of the 𝜈μ candidates

9 candidates

6.4 σ observation of 𝜈0𝜇

3.7 σ evidence for 𝜈e

https://arxiv.org/abs/2411.187874 x 105 tracks/cm2 in 20 fb-1 exposure Observation of collider neutrinos without final 
state muons with the SND@LHC experiment
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1.78 cm

(μm)

Conditions similar 

to the expected 

SHiP environment! 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802
https://arxiv.org/abs/2411.18787
https://inspirehep.net/literature/2854017
https://inspirehep.net/literature/2854017


A first silicon prototype in synergy with the HL run of SND@LHC  8

● Silicon trackers as vertex detector 

● Iron-core muon spectrometer

● Silicon-based hadron calorimeter

Steel 

Frame

Optical Fibre 

Patch Panel

SCC

CARD

W-slab Supports

ROB-Type I

59 cm

Newly developed ROB

First full size 

(40 x 40 cm2) 

Silicon module assembled
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High-resolution silicon strips from CMS 

TOB used by the SND@LHC in Run 4

SND@LHC detector in Run 4 

SND@LHC in HL
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𝑁 ∗ 𝐼 (magnetomotive force) [kAturns] 53.6

𝐵𝑦 in the active region (iron leg) [T] 1.678

𝑧−𝑙𝑒𝑛𝑔𝑡ℎ𝐵𝑦 𝑑𝑙 (whole magnet) [T*m] 6.371

SND detector “embedded” in μ shield e.g. one of the different 

configurations under study 

compliance with 

magnetic properties 

High-precision 

VTX detector

3.1t with 50 planes 0.5t 1.2t

VTX detector & ECAL 



Neutrino identification studies in the downstream part
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Magnetized HCAL 

(complementing the high-

resolution VTX detector)

AND

A 𝜈 detector itself! 

𝜎

𝐸
~
53%

𝐸
𝜋

40 x 40 cm2 cross-section

BDT results



Extruded scintillator with fibre guides

SOLID detector 

• Fibers every 1 cm 

• Both horizontal and vertical

• Sensitivity to low energy 

(MeV scale)

• Expect ∼ few % resolution 

at several GeV

Will build a prototype and expose it to e/𝜋 beam to measure hadronic and e.m. energy resolution



SciFi technology already employed in SND@LHC
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Readout electronics

Active surface X-Y
20mm thick

In SND@LHC
Active area 400mm x 400mm
Fibre layer orientation X-Y (orthogonal)
6-Layer fibre mats, 1.35mm thick
250µm fibres and 250µm channel pitch
Readout electronics developed at EPFL based on TOFPET2 ASIC
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X-Y plane in SND@LHC

add X’Y’ stereo angle to 

suppress ghost

σ ∽ 95 𝜇m



Neutrino interactions in the target 

Normalised to 6 × 1020 pot, 3-ton detector

Expected 𝜈𝜏 including reconstruction efficiencies

Includes charge id in 𝜇 spectrometer (𝜎stat ~ 2%)

𝜎stat < 1% for all neutrino flavours

Ds
+ →𝜏+ 𝜈𝜏  

𝜏+ → anti-𝜈𝜏 X   

Charge asymmetry and decay chain explain why anti-𝜈𝜏s are more energetic
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Ds uncertainty large, BR (Ds→ 𝜏 𝜈𝜏) = (5.32±0.11)% (2% small)

NA65 measuring p p → X Ds→ 𝜏 in a thin target 

NA65 expects 1000 events → potentially ~3%

Measure the J/𝜓→𝜇+𝜇- in a thick/thin target at 400 GeV (and a few other energies) 

𝜈𝜏 cross-section measurement
When the 𝜏 charge is identified, expected statistical accuracy ~ 2%

Setup of the muon flux measurement EPJ C80 (2020) 84

Charm  production cross-section at 400 GeV: NA27 experiment (10%)

5 mm

NA65 schematic

14



Impact of 𝜈𝜏 measurements on oscillation studies: SK/HK and IceCube

T. Wester, NNN2023

Mass ordering sensitivity from upward-

going, multi-GeV electron-like samples

• 𝜈𝜏 cross-section uncertainty 

dominant systematic

• Hyper-K will have stat error <2%

C. Bronner, 

https://indico-sk.icrr.u-tokyo.ac.jp/event/5223/

M. Scott (Imperial College) • Largest particle detector in existence (1Mt)

• Limited at low energy threshold ~ 10GeV

• Above threshold of 𝜏 production –can 

measure 𝜈𝜏 appearanceSK

SK

ICECUBE

T. Stuttard, NuFact 2019 

IceCube-gen2 completed in 2032 
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F4/F5 structure functions

• At LO F4= 0, 2xF5=F2

• At NLO F4 ~ 1% at 10 GeV

Rep. Prog. Phys. 79 (2016) 124201

Evidence for F5 can be assessed 

quickly 

Measurement of F4/F5 ∽5% accuracy

differential measurement as a function of x and Q2

bins with 5%

𝜈𝜏 only

C. Albright and C. Jarlskog, NP B84 (1975)

About 3 × 104 detected events 

below 60 GeV
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Charm physics with neutrinos
Rep. Prog. Phys. 79 (2016) 124201

based on 2 ×1020 pot

Charm production via anti-neutrinos dominated by s-bar quarks

Charm production via neutrinos shared ∽50/50 between d (valence) and s (sea)

Vcd Measurements by BESIII and CLEO

Earlier measurements by 𝜈s (CDHS, CCFR, CHARM II): subtraction of ratios of two-muon 

events in 𝜈 and anti-𝜈 interactions, combined with B𝜇

CHORUS: 2013 𝜈-induced charm events, limited by anti-𝜈 being a contamination (32 events)

(PDG 2022 value from neutrinos)

CHORUS

SHiP can measure Vcd with <2% accuracy, comparable/better than other methods! 
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𝜈e measurements 
Phys. Rev. D41, 2653 (1990)

measurement in the same energy range (wide band beam, up to 200 GeV) at Fermilab (1990): 1403 νe + 179 anti-νe

The sample was 10 times larger than previously available measurements

Inclusive νe - C cross-section with T2K 

near detector in 2014 (<E> ~ 1.4 GeV)

Compared with Gargamelle

Bubble chamber (Ne-H2 mix) detector 

To separate νe /anti- νe dedicated run with an 

emulsion spectrometer (low mass) and a

magnetised target

NIM A 592 (2008) 56-62
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Also a LDM detector
In the background suppression against 𝜈e interactions, the most powerful 

handle is the isolation criterion: no extra-activity

Single electron produced by an LDM particle scattering 

• A high-granularity vertex detector

• Tracking stations (for VTX) embedded in a high-density material (W) 

Optimise longitudinal segmentation  

• Need to combine vertex reconstruction capabilities with electromagnetic 

energy reconstruction 
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DIS cross-section ∼ 2000 larger, 

made negligible by this cut 



SND: “Direct” light dark matter search

• Direct search through scattering, sensitivity to 𝜖4 instead of 
indirect searches 𝜖2 ( E technique)

Electron-induced 
shower

6 ×1020

Expectation from relic density is within reach

➔ Background is dominated by neutrino elastic     
and quasi-elastic scattering, for 6 ×1020 PoT
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Reach 𝜈 physics program and most sensitive FIBs search at CERN  

Stay tuned! 
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