

Neutrinos from Stored Muons, nuSTORM: A Unique GeV Electron-(Anti)Neutrino Machine

Lu, Xianguo 卢显国 University of Warwick On behalf of the nuSTORM Collaboration

> Workshop on Neutrinos@CERN 2025 January 24, CERN

Outline

1. Problems and opportunities with neutrino masses

2. Call for a GeV v_e and \bar{v}_e machine Accelerator neutrino experiments vs. nuSTORM

3. nuSTORM physics programs

- a. Neutrino cross section
- b. BSM

Neutrino Mass and Mixing

Standard ModelBeyond Standard Model $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} =$ Pontecorvo-Maki-Nakagawa-Sakata
PMNS matrix $\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

Mass Ordering

Normal Inverted Δm^2 leads to neutrino oscillations

Problems

U What are the neutrino masses?

Ass gaps, Δm_{21}^2 , $|\Delta m_{32}^2|$, and ordering, sgn(Δm_{32}^2)? What are the mixing parameters?

 $\clubsuit Mixing angles, \theta_{12}, \theta_{23}, \theta_{13}, and CP-phase, \delta_{CP}?$ $\Box Are there more than three types of neutrinos?$

Antineutrinos

□ 2-flavor oscillation: CP not observable

Antineutrinos

Opportunities

3-flavor oscillation: CP-violation possible
 Short-baseline anomalies: sterile neutrinos?

Outline

1. Problems and opportunities with neutrino masses

2. Call for a GeV v_e and \bar{v}_e machine Accelerator neutrino experiments vs. nuSTORM

3. nuSTORM physics programs

- a. Neutrino cross section
- b. BSM

Near Detectors to constrain v flux and cross section together (no oscillation)

Accelerator v Experiment	E_{ν} /GeV @ Flux Peak	Far Detector Technology	Target Nuclei
T2K / Hyper-K	0.6	Water Cherenkov	H ₂ O
NOvA	2	Liquid Scintillator	СН
DUNE	2.4	LAr TPC	Ar

Signal = (**Beam flux** · **Oscillation probability** · Cross section) ⊕ Detector effects

 \Box Beam: v_{μ} and \bar{v}_{μ}

Oscillation

- ν_{μ} and $\bar{\nu}_{\mu}$ disappearance (most oscillated to ν_{τ} and $\bar{\nu}_{\tau}$)
- * v_e and \overline{v}_e appearance, then CP violation

"β decay" of collision products (v_{μ} from π, v_{e} from K)

Neutrino beams from accelerators → Directional

Charge selection on π → High purity ν or $\overline{\nu}$ beams

"β decay" of collision products (v_{μ} from π, v_{e} from K)

Neutrino beams from accelerators → Directional

Charge selection on π → High purity ν or $\overline{\nu}$ beams

Call for a GeV ν_{e} and $\bar{\nu}_{e}$ Machine

Hyper-K example

Improving error of v_e/\overline{v}_e xsec ratio 4.9% \rightarrow 2.7% Improve δ_{CP} sensitivity by ~ 1 σ for 6 year Significantly shorten running time to reach 5 σ

Jeanne Wilson, Neutrino2022

Call for a GeV v_{e} and \bar{v}_{e} Machine

Oscillation Signal = (Beam flux · Oscillation probability · **Cross section**) \oplus **Detector effects**

 ν_{e} ($\bar{\nu}_{e}$) cross sections: major δ_{CP} systematics \Box $\delta_{CP} \sim v_e$ appearance \sim no v_e in beams \bullet No *in situ* v_e measurements v_{μ} for v_{e} via lepton universality, but higher precision needed for δ_{CP}

Hyper-K example

Improving error of v_e/\overline{v}_e xsec ratio 4.9% \rightarrow 2.7% Improve δ_{CP} sensitivity by ~ 1 σ for 6 year

Significantly shorten running time to reach 5 σ

Jeanne Wilson, Neutrino2022

Call for a GeV ν_{e} and $\bar{\nu}_{e}$ Machine

Oscillation Signal = (Beam flux · Oscillation probability · **Cross section**) **① Detector effects**

 v_e (\bar{v}_e) cross sections: major δ_{CP} systematics \bullet $\delta_{CP} \sim v_e$ appearance \sim no v_e in beams \clubsuit No *in situ* v_e measurements \bullet v_{μ} for v_e via lepton universality, but higher precision needed for δ_{CP}

✓ Dedicated ν_e measurements

- 1. Better-understood fluxes
- 2. Correct settings for oscillations: beam energy, final-state acceptance, etc.
- 3. Higher statistics
- 4. Lower v_{μ} background
- **5.** Optimised detection for v_e

Shorten running time = reduce share cost

\Box $\bar{\nu}_{\mu} + \nu_{e}$ and $\nu_{\mu} + \bar{\nu}_{e}$ fluxes from μ^{\pm} decays

***** Optimisable $v_{\rm e}$ and $\overline{v}_{\rm e}$ fluxes

Perfect understanding of flux shape and normalisation

- □ Scientific objectives
 - * %-level ν cross sections
 - ✤ BSM searches, e.g. steriles beyond FNAL SBN
 - Muon collider demonstrator

- 1st v beam facility based on a stored muon beam
- □ Highest ever stored-muon beam power
- \Box v flux deduced by μ beam monitoring

- 1st v beam facility based on a stored muon beam
- □ Highest ever stored-muon beam power
- \Box v flux deduced by μ beam monitoring

- 1st v beam facility based on a stored muon beam
- □ Highest ever stored-muon beam power
- \Box v flux deduced by μ beam monitoring

- **D** Production Straight (example w/ π^+ injection)
 - ν_{μ} flux from $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ ("pion flash")
 - $v_e + \bar{v}_\mu$ flux from $\mu^+ \rightarrow e^+ v_e \bar{v}_\mu$
 - * Maximise μ capture efficiency
- □ Arcs and Return Straight
 - μ momentum tunable between 1 and 6 GeV/c,
 spread ±16%

A Brief History of nuSTORM

CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.08QN

2012-2013	Lol and Proposal to FNAL PAC [arXiv:1206.0294, arXiv:1308.6822], Eol to CERN [arXiv:1305.1419] Sterile neutrinos
	Neutrino-nucleus scattering
	Technology test-bed for muon accelerators
2014	Steriles sensitivity [Phys.Rev.D 89, 071301 (2014)]
	nuSTORM at FNAL
2019	Feasibility of nuSTORM at CERN [CERN-PBC-REPORT-2019-003]
	SPS 100 GeV proton beam
	Optimised for neutrino-nucleus scattering, maintaining sensitivity to BSM (steriles + non-unitarity, NSL Lorentz-invariance/CPT violation)
2022	Snowmass 2021 [arXiv:2203.07545]
	Advocating synergy with ENUBET and Much Collider Demonstrator

nuSTORM at CERN

- Muon Collider demonstrator
 G-D cooling
- ✓ ENUBET (see talks yesterday) □ v_e from e^+ tagging for $K^+ \to \pi^0 e^+ v_e$ □ v_μ from μ^+ tagging
 - \Box V_{μ} from μ tayging
 - □ Flux uncertainty ~ 1%
- ✓ nuSTORM as testbed for muon storage ring
 - Complete implementation for large acceptance (inc. injection and extraction sections)
 - R&D for very precise determination of stored-muon energy and spread

nuSTORM Fluxes

Beam properties

□ Oscillation-relevant energy regime

- ✤ Hyper-K: 0.6 GeV
- ✤ DUNE: 2.4 GeV
- □ Neutral lepton
- □ 100% polarized
- □ Isospin sensitive

- Accelerator "tune" gives fine control
 - E.g. optimise flux shape (or spread) by adjusting the ring acceptance
- **Unique opportunity**
 - ***** E_{ν} -scan measurements

nuSTORM Fluxes

PRISM concept: Combine multiple fluxes to synthesise a statistically equivalent flux to the desired one

- nuSTORM synthetic flux: beam energy tune, no detector moving
- PRISM at Hyper-K or DUNE: sample fluxes at different detector locations

Outline

1. Problems and opportunities with neutrino masses

2. Call for a GeV v_e and \bar{v}_e machine Accelerator neutrino experiments vs. nuSTORM

3. nuSTORM physics programs

- a. Neutrino cross section
- b. BSM

Neutrino interactions at nuSTORM

Neutrino interactions at nuSTORM

□ Nuclear medium dynamics

□ (Hadronic) Final-State Interactions

Van Cuyck, PhD Thesis, Ghent University (2017)

nuSTORM v_{μ} and \bar{v}_{μ} Cross Section Measurements

100-ton fiducial mass (carbon) detector, 50 m from end of Production Straight, 10²¹ POT (5 years)
 1% (green) and 10% (yellow) flux uncertainty + detector systematics

nuSTORM v_{e} and \bar{v}_{e} Cross Section Measurements

100-ton fiducial mass (carbon) detector, 50 m from end of Production Straight, 10²¹ POT (5 years)
 1% (green) and 10% (yellow) flux uncertainty + detector systematics
 Very sparse existing data (mainly from MINERvA and T2K from last decade)

nuSTORM TKI Measurements

Transverse Kinematic Imbalance (TKI) [Phys.Rev.C 94, 015503 (2016)] Measurement of nuclear effects with minimal dependence on neutrino energy

- □ Measured at T2K, MINERvA, MicroBooNE
- $\square E_v \text{ scan to extract dynamical evolution of nuclear} \\ \text{medium effects}$

150

50

100

 $\delta \alpha_{\tau}$ (degree)

nuSTORM TKI Measurements

Transverse Kinematic Imbalance (TKI) [Phys.Rev.C 94, 015503 (2016)] Measurement of nuclear effects with minimal dependence on neutrino energy

- □ Measured at T2K, MINERvA, MicroBooNE
- $\square E_v \text{ scan to extract dynamical evolution of nuclear medium effects}$

Dissipative processes: 2p2h, FSI
 Dynamical evolution mapped out via *E*_v scan

100

 $\delta \alpha_{\tau}$ (degree)

50

150

nuSTORM BSM Physics

nuSTORM has sensitivity to the weak mixing angle with protoDUNE-like detector
 nuSTORM high competitive in constraining lepton flavour violation (LFV) & neutrino tridents

LFV (95 $\%$ C	C.L.) D. Pasari J. Turner
Experiment (Uncertainty)	$BR (\pi^+ \to \mu^+ \nu_e)$
BEBC	$8 imes 10^{-3}$
SBND (10%)	1.5×10^{-3}
SBND-PRISM $(10\%, 5\%)$	1.2×10^{-3}
SBND-PRISM $(10\%, 2\%)$	$8.9 imes 10^{-4}$
nuSTORM(1%)	7.25×10^{-4}
Statistics only	$8.5 imes 10^{-5}$

Neutrino Trident Events

D. Pasari J. Turner

Channel	SBND	$\mu BooNe$	ICARUS	DUNE	ν STORM
$(e^{\pm}\mu^{\mp})$					
Coherent	10	0.7	1	2993	193
Diffractive	2	0.1	0.2	692	31
(e^+e^-)					
Coherent	6	0.4	0.7	1007	134
Diffractive	0.7	0	0.1	143	6.5
$(\mu^+\mu^-)$					
Coherent	0.4	0	0.0	286	15
Diffractive	0.4	0	0.0	196	9

nuSTORM BSM Physics

Large Extra dimension (LED) can explain the lightness of neutrino masses

- Using protoDUNE like detector with 50 m baseline, nuSTORM has sensitivity to μm LED length scales
- Inustor on LED length scale for inverted ordering

Summary, Outlook, and Discussions

- 1. Problems and opportunities with neutrino masses
- Future accelerator neutrino experiments will be systematics dominated. We need a community plan after Hyper-K and DUNE.
- How to position the neutrino community for ESPPU?
- 2. Call for a GeV $\nu_{\rm e}$ and $\bar{\nu}_{\rm e}$ machine
 - Accelerator neutrino experiments vs. nuSTORM
- Synergies with other future machines (ENUBET, Muon Collider)
- Advanced detector R&D for near-future experiments will guide nuSTORM's choice of detector technology
- 3. nuSTORM physics programs
 - a. Neutrino cross section
 - b. BSM
- > Opportunities with perfectly understood v_e and \bar{v}_e flux (shape and normalisation) in the few GeV regime

BACKUP

Table 1: Key parameters of the SPS beam required to serve nuSTORM.

Momentum	100 GeV/c
Beam Intensity per cycle	4×10^{13}
Cycle length	3.6 s
Nominal proton beam power	156 kW
Maximum proton beam power	240 kW
Protons on target (PoT)/year	4×10^{19}
Total PoT in 5 year's data taking	$2 imes 10^{20}$
Nominal / short cycle time	6/3.6 s
Max. normalised horizontal emittance (1σ)	8 mm.mrad
Max. normalised vertical emittance (1σ)	5 mm.mrad
Number of extractions per cycle	2
Interval between extractions	50 ms
Duration per extraction	$10.5 \ \mu s$
Number of bunches per extraction	2100
Bunch length (4σ)	2 ns
Bunch spacing	5 ns
Momentum spread (dp/p)	2×10^{-4}

CERN-PBC-REPORT-2019-003 DOI:10.17181/CERN.FQTB.08QN

Total circumference	616 m
Length of one straight section	180 m
One straight section/circumference ratio	29%
Operational momentum range	1-6 GeV/c
Reference momentum	5.2 GeV/c
Reference tunes (Q_h, Q_V)	(8.203, 5.159)
Momentum acceptance	$\pm 16\%$
Number of cells in the ring:	
Straight quad cells	6
Arc first matching cells	4
Arc cells	12
Arc second matching cells	4
Straight matching FFA cells	1 (+1 mirror)
Straight FFA cells	8

Table 1: Selected parameters of the hybrid FFA storage ring. arXiv:2203.07545

doi:10.18429/JACoW-IPAC2022-THPOTK052

 nuSTORM can constrain the presence of an additional light sterile & is complementary to other current SBN programmes

