Results from the DsTau/NA65 experiment at CERN

A. Murat Güler

On behalf of the DsTau Coll.

January 24, 2025

- The tau neutrino is one of the least known particle in the Standard Model.
- A few measurements have reported the cross-section for charged current interactions of ν_{τ} with a limited statistics.
 - A significant systematic uncertainty in ν_{τ} flux (>50%) is due to forward charm production.
- The DsTau experiment was proposed to measure an inclusive differential cross-section of *D_s* production in p-A interactions.
- Precise measurement of ν_{τ} CC cross-section would be:
 - Search for new physics effect in $u_{ au}$ nucleon interaction
 - Important for current and future neutrino experiments like FASER, SND@LHC and SHiP and astrophysical ν_{τ} observations.

The concept of measuring the production of $u_{ au}$

- The main source of tau neutrinos is decay of D_s mesons to tau neutrino and tau lepton.
- Detect double kink topology of $D_s \rightarrow \nu_{\tau} \tau \rightarrow X$ & partner charm decay topology within a few mm.
- Technical challenge to a few mrad kink angle of $D_s \rightarrow \nu_{\tau} \tau$ decays.

 Observing the decay topology of D_s into τ requires sub-micron spatial resolution and sub-mrad three-dimensional angular resolution.

Emulsion detector

• Nuclear emulsion can provide the required spatial and angular resolutions

Cross-sectional view of emulsion plate

Experimental setup

- In each unit, there is a 500 µm tungsten plate followed by 10 nuclear emulsion films interleaved with 9 plastic spacers. This unit structure is repeated 10 times in a module.
- Original structure had more material → too high track density in ECC → Dedicated scanning is required.
- Reduce material, but sufficient performance
- Making data taking procedure simple

Experimental setup

Scintillation counters Measure the beam intensity

XDWC Measure the beam profile

Target mover

Movable stage,

- + Real time speed control wrt beam intensity
- \rightarrow Uniform irradiation with proton density of 10⁵/cm²

DsTau/NA65

Data taking

• Data taking was completed in 2023.

	Emulsion films	Beam time
Pilot run	50 m^2	1 week
2021 run	$110 { m m}^2$	2 weeks
2022 run	$110 \ m^2$	1 week
2023 run	$260 m^2$	2 weeks

• We successfully collected the highest-quality data!

Emulsion scanning

- Emulsion scanning is performed by the HTS system
- A throughput rate of 10 Gbytes/sec
- It takes about 40 min per film (20 cm x 25 cm x 2 = 1000 cm^2)
- About 15% of emulsion films have been scanned.

300 nm spatial resolution in the relevant angular range

Event reconstruction

• Event reconstruction consists of several steps

- After base-track reconstruction, film-to-film alignment is performed by applying base-track pattern matching.
- Base-tracks are connected film by film according to angular and position acceptance to form so-called volume tracks.
- After completing the track-reconstruction step, vertexing algorithms are applied to identify the proton interactions. Tracks containing at least four base tracks are used for vertexing.

Analysis of proton-tungsten interactions

• A sample of about 100k proton interaction in the tungsten plates are analyzed from a single module of the pilot run data (paper submitted to EPJC, arXiv:2411.05452v1).

Tungsten Plate	Ν	N_0	$\frac{N}{N_0}$ (%)
1	13,586	3,310,658	0.41
2	13,390	3,292,677	0.41
3	12,653	3,256,746	0.39
4	12,256	3,214,141	0.38
5	11,745	3,157,020	0.37
6	11,264	3,082,105	0.36
7	10,645	2,996,099	0.35
8	9,775	2,892,348	0.34
Total	95,314	25,201,794	0.38

Z position of vertices

Analysis of proton-tungsten interactions

• None of the Monte Carlo models accurately describe proton-tungsten interactions, with a preference observed for EPOS.

Anglular Distribution

Angular distribution dependence on multiplicity

- There is a discrepancy between the data and MC predictions at high multiplicity.
 - Hadron production models in MC generators should be properly tuned.

QGSJET

Analysis proton-tungsten interactions

- The first measurement of proton interaction length in tungsten.
- The multiplicity distribution is consistent with KNO-G scaling predictions.

Sub-volume	Data(mm)	EPOS(mm)
1 2 3 4 5 6 7 8	$\begin{array}{c} 91.0 \pm 2.5 \\ 90.8 \pm 2.5 \\ 93.7 \pm 2.6 \\ 93.9 \pm 2.7 \\ 94.5 \pm 2.7 \\ 94.4 \pm 2.7 \\ 94.4 \pm 2.7 \\ 94.7 \pm 2.8 \\ 96.8 \pm 3.0 \end{array}$	$\begin{array}{c} 95.2 \pm 2.7 \\ 95.5 \pm 2.8 \\ 95.3 \pm 2.8 \\ 95.5 \pm 2.8 \\ 94.8 \pm 2.8 \\ 95.0 \pm 2.8 \\ 95.0 \pm 2.8 \\ 98.1 \pm 3.1 \\ 97.0 \pm 3.1 \end{array}$
Mean	93.7 ± 2.6	95.8 ± 2.8

Proton-tungsten interaction length

Test of KNO-G scaling

Charm production

• In \sim 100k proton-tungsten interactions, 54 charm pairs (charged & charged or neutral charm) decaying into multi-prongs have been found, analysis of these events is going on.

D_s decay search

- A total of $\sim 2\times 10^6$ proton-tungsten interactions from 10 out of 30 pilot run modules were analyzed.
- A preliminary selection is applied to the sample to enrich $D_s \rightarrow \tau \rightarrow X$ signal events.

	Current status	If all is done
p-A interactions	1,863,286	1,863,286
Selected events	88	88
Check with event viewer	86	88
Confirmed events	22	22.5
Momentum measurement	12	22.5
$P_T > 0.1$ GeV & partner charm	5	9.4

• A total of 1.7 signal events are expected based on the selection efficiency (preliminary!)

• An automated search of small kinks & momentum measurement have been implemented.

D_s decay search

Conclusion

- DsTau studies are crucial for current and future neutrino experiments such as FASER, SND@LHC and SHiP.
- Physics run from 2021 to 2023 successfully completed.
- Emulsion data acquisition is going on.
- Excellent detector performance, nuclear emulsion provides 300 nm spatial resolution.
- The first measurement of proton interaction length in tungsten.
- An automated search of small kinks & momentum measurement have been implemented.
- More charm results will come in this year.
- The DsTau results can assist in refining proton-nucleus interaction models used in MC event generators.

Back up

Selection	Efficiency (%)
D_s angle $<$ 50 mrad	69.3
D_s and $ au$ decay length >1 plate	
2 nd kink within 18 plates	31.4
1^{st} kink angle in (2 mrad, 10 mrad)	47.3
IP of 1^{st} kink in (8 μ m, 30 μ m)	70
2 nd kink angle and IP sel.	88.2
Partner Charm	79.3
$P_T > 0.1 { m GeV}$	87.1
Total	4.4