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DUNE Phase 11

@ Critical to achieve DUNE'’s full scope — includes upgrades to ND, FD, and
beam for higher statistics
* Only the ND upgrade to ND-GAr (MCND in the plot), which leverages a
gas argon TPC design, addresses neutrino interaction and detector
acceptance systematics

F T I T I T I T l T I T | T 7T I T ] :l LI I T I.l L l .l LI I UL I T l L I LI l:
45 DUNE Simulation —— CPV Sensitivity 9t DUNE Simulation —— CPV Sensitivity 3
© 4.0F Al Systematics 107biasinbce 4 2 8- All Systematics E
2 .- Normal Ordering 1 27E Normal Ordering :
S 35E 75% of 5¢p values 4 2 'f S0%ofdcp values 3
2 30F 1 2°F E
] B ] QO - ]
c C = c - .
= = . © .F 7
S 15F 1 2% _:
= - ] > ]
= 10F 4 o 2f E
(@) - . O 1 - =
05 _-— — 3 FD3 =
:_ L1 l | lm | - | I ] | I I .| I | | | | ] - I - I Lkl | -} I:

I S S S ST S T R 00 25 50 75 100 125 150 175 20.0

Years Years

Phase II ND Upgro\ci@;: when thasa I nuoin spa&&rome&av will s rapia&eﬁd bv ND-CrAY

006,1604-3, Eur. Phys. 3 C %0, 97% (2020), 2109,01304, Phys. Rev. D 10§, 072006 (2022), 200203008
T. A. Mohayai H




e Key design features recommended by P5 include a high-pressure
gaseous argon detector (HPgTPC), ECAL, and magnetized volume
» Also includes evolving design features (e.g. pixelization,

amplification, and granularity) — requires R&D and test beam to meet
physics goals

S

| Swn

T. A. Mohayai n



Role in Reducing v-Interaction Systematics

® Addressing neutrino interaction systematics requires resolving
discrepancies in interaction models, especially in regions
dominated by low-energy hadrons

e The low energy threshold of a high-pressure gas TPC allows
DUNE to be more sensitive to these regions

HP9TPC gives access to inaccessible regions of proton energy thanks
to its low energy threshold
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Bridging lcs and Design

e Test beams — a platform to validate design concepts and physics
performance under controlled conditions

e First neutrino-TPC prototype was out at CERN's T10 beamline—
focus was on the low-momentum proton beam (< 0.5 GeV),
provided important lessons learned

» Surveyed point
e Calculated point
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Advancing R&ED Post-CERN Test Beam

ALICE TPC and iks chambers

» TPC amplification: focused initially on the acquired ALICE MWPCs,
the current focus is on MPGDs such as GEMs
* TPC readout electronics: test of the SAMPA-based electronics
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TPC Amplification R&ED - MWPC

e [nitial efforts focused on MWPCs acquired from ALICE
» Two efforts in US (GOAT) and UK (TOAD, same pressure vessel as
the CERN test beam) completed a pressure scan of the chambers

Fermilab Test Stand, housing an

Ichjoi HoLLowaj ?ra&o&vpe which was used
ot CERN T10 beamline, recently moved ko

Fermilab Test Beam, now named TOAD
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TPC Amplification RED - MWPC

e Chambers able to maintain the same gain at higher pressures with
appropriately scaled voltages:
» Using an Ar-CH, mixture, a gain of 1k possible with ~3kV (deemed
the safe operational limit by ALICE)
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TPC Amplificakion R#%ED - GEMs

¢ The next phase of R&D is centered on GEM-based systems
* On-going efforts include GORG setup (GEM Over-
pressured with Reference Gases), building on TM's New

Initiatives, with a future test beam planned post-R&D in "‘
the coming years .‘@'
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TPC Amplification R&ED - GEMs

¢ 1 atm bench tests indicate the expected trend with the Fe-
55 pulse height distribution

*» GOAT pressure vessel being prepared for the upcoming

pressure scans

improved voltage stability
enables higher voltage supply
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TPC Amplificakion R#%ED - GEMs

e Prior to pressure scans, simulation studies are guiding the
optimization of triple-GEM parameters
* Some parameters, such as gas mixture and transfer

fields, can be easily adjusted to maintain high gain at .‘é"
)

higher pressures for a given voltage
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TPC Amplificakion R#%ED - GEMs

e Prior to pressure scans, simulation studies are guiding the
optimization of triple-GEM parameters
* Other parameters such as transfer or induction gap
configurations and GEM hole pitch when modified are "‘
design-level modifications and require a re-engineered .@'
triple-GEM stack )
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Readout Electronics RED - Latest Test Beam

® Beam prototype TOAD carried out a full slice test of SAMPA
electronics under high pressure and in test beam environment at
Fermilab Test Beam, using the same pressure vessel from the CERN
test beam
» Established a clear path to deliver the readout system for ~$2M,
making SAMPASs a cost-effective option for the future ND-GAr
* Next test beam program will integrate GEMs with SAMPAs
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Readout Electronics RED - Latest Test Beam

e Additional important measurements were electronics noise at 4.5
bar Ar-CH4 (96:4) — demonstrated that electronics can operate
under this pressure for the first time

® Detailed pressure, volume, temperature studies also carried out
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Integration in a Fubture Test Beam

® The primary objectives:
* Demonstrate long-term operation of the GEMs with SAMPA readout
electronics at high pressure
* Demonstrate reconstruction of low energy tracks
* Probe the low-momentum region where models are in disagreement
® CERN Neutrino Platform a potential site for this:
* The focus would be on low-energy beams, specifically T9-T11 beams with
energies that match our requirements
® Existing pressure vessel, TOAD, tested at CERN and Fermilab, a viable
platform:
* Requires upgrades, such as active cooling, temperature monitoring, sensors
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Integration in a Fubture Test Beam

A key advantage of a prototype ot CERN
is the GDD group, who can offer
invaluable expertise for many of the
prototyping activities




Neutron Test Beam Campaign

® CERN test beam program could also include IU Pressure Vessel
neutron beams: being procured for
» n_TOF as a potential site neutron beam tests

® Indiana University is procuring a pressure

vessel for neutron beam tests of GEMs at

the former Cyclotron Facility at the

university

* Pressure vessel size (> TOAD) is
optimized to maximize neutron
interactions on argon

* Protons < 500 MeV unlikely to go through
vessel walls — protons from neutron
scatters on argon provide the means to
validate low-energy hadron reconstruction

* Insights from these tests also help identify
gaps in neutron reconstruction
performance, informing design
requirements for ND-GAr’s ECAL
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Possible Timeline

® 2025
* Begin simulation studies for GEM optimizations
* Initiate pressure scans and prepare for SAMPA integration

e 2026-2028
* Develop and test medium and larger-scale GEM prototypes
* Carry out phase I of neutron beam studies at Indiana University and
optimize GEM prototype from initial results

® 2029-2030
* Prepare for CERN beam tests, including finalizing GEM and
electronics designs

® 2029-2033
* Carry out test beam campaigns with maturing hardware prototypes
and perform full slice tests
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Bridging lcs and Design

® Choice of gas pressure to balance increased target density with charge
amplification — charge amplification (gas gain) is reduced at high
pressure, affecting the achievable energy threshold
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Detector Performance in Event Display - GAr vs LAr

ND-GAr's high pressure
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ND-GArs Low Energy Threshold Capability

® Lower threshold of ND-GAr's HPgTPC than ND-LAr:
* Leads to a high sensitivity to low energy protons or pions:

A GAr-based detector sees lower KE
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ND-GrAr’s PID Capability

e dE/dx resolution: 0.8 keV/cm

e Excellent PID combined with low threshold feature allows ND-GAr to help
with correctly identifying the different final state topologies e.g. pion
multiplicities very well
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Additional R#ED Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously

operated at 1 atm)

# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:

» Control pile up (drift velocity) and improve spatial resolution (diffusion)

3.5 _
90% Ne +10% CO,
3r @ 400 V/cm, 1 atm —
o5 | }( ‘ E/P = 40 Vicm/bar
= 111 bar Ar-CH4
= ol —10 bar Ar-CH,
g 1 bar Ar-C,H,
= 10 bar Ar-C_H
© | 26
> 1.5 111 bar Ar-CH;

—10 bar Ar-C,H,

. 0O 10 20 30 40 50 60 70 80 90 100

CXHy fraction (%)

o (um/Vcm)

1200
1100
1000
900
800
700
600
500
400
300
200
100

T T T T T T T T

T
- 95% Ar + 3% CF, + 2% iC,H,,  E/P =40 Vicm/bar ]
| = ~ @ 275V/cm, 1 atm 11 bar Ar-CH, —
- - N : —10 bar Ar-CH, _
[ = __90%Ne+10%CO, } bar Ar-C.H, ]
= @ 400 V/iem, 1 atm 10 bar Ar-C,H, ]
e ---- Thermal limit @ 10 bar 1 +1 bar Ar-C;H,

|~ e —10 bar Ar-CH, B

2 "l,' 7]
- 45 . tuy, . —

"I"'.lllll””'7"""‘»"'l||‘||‘||

— "IIl""""lllllrlII'|'|I|I|I|I|7I|'|""' -
— \ _
- \K _

0O 10 20 30 40 50 60 70 80 90 100
C,H, fraction (%)

P. Hamacher-Baumann et al., Phys. Rev. D 102, 033005 (020)

T. A. Mohayai E



Additional R#ED Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain
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Additional R#ED Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)

» Maximize gas gain, while minimizing gas electrical breakdown
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Additional R#ED Efforts

® What is involved in the charge readout optimization studies:

* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)

# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain, while minimizing gas electrical breakdown

» Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-
hydrogen interactions
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e High-pressure gaseous argon enables precise reconstruction of low-
energy charged particle tracks, critical for studying exclusive final
states, e.g. pion multiplicity
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from the developing ND-GAr software, GarSoft - highlights ongoing
studies, not final resulks
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