

Collimators and radiation study in FCC-ee

Stefano Marin, Anton Lechner

Sept 24, 2024

Emittance and beam spot calculations

• Emittances from Katsuonobu Oide, FCC week 2024

 $\epsilon_x = 0.7 \text{ nm}$ $\epsilon_y = 1.9 \text{ pm}$

Collimator gaps position based on Twiss parameters along the beam and the specified sigmas

For shower absorbers (SA), 15σ in x, 91σ in y.

 β –function linearly interpolated between primary and secondary collimator for SA gaps

Relative Power Deposition

Absolute Power Deposition

Assumptions:

- Bunch intensity: 2.16×10^{11}
- Bunches per beam: 11200
- Loss decay time: 5 minutes

Collimator power loss: 37.19 kW

Power absorption map for TCS_H1

Vertical impact

Horizontal impact

Sliced +/- 1.5 mm from beam spot in the vertical direction

Peak power absorption in TCS_H1

Power absorption in tunnel

Power absorption in tunnel, no shower absorbers

Bayesian Optimization for Shower Absorbers

- To minimize the use of shower absorbers, as well as to reduce the power absorbed by the tunnel/environment
- Bayesian optimization of position of collimators, to be placed between TCP_H and TCS_H1, a 140m drift
- Optimizing first for only two shower absorbers

Power absorbed in environment (W)

20-20 separation minimizes the landscape, slightly better

Shower absorber effects (optimized two SA)

Next steps

- Finish optimization for 4 shower absorbers
- Realistic impact parameter distribution
- Threshold of power absorption from RP
- Add shower absorber after TCS

Preliminary results show that two shower absorbers between TCP and TCS can lower the power leakage by $\sim 2/3$

Supplemental slides

total pipe/tunnel: 10.4759 total_quadrupole: 0.0091 collimator tanks: [0.0082 0.0657 0.2408 0.1254 0.0102 0.0044] collimator jaw 1: [0.1019 0.1812 2.1388 1.5943 0.0617 0.0814] collimator jaw 2: [0.0128 0.0959 4.6689 3.0921 0.1475 0.0454] shower absorbers [17.4364 11.7059 39.0989 8.4531]

Extra slides

Results from last time

Setup

- Collimator straight section of FCC-ee
- Only positron beam, inner ring
- Energy of beam in Z mode (45.6 GeV/c)

We simulate beam losses close to the edge of the collimator:

- Pencil beam
- An **impact parameter of 1** μ m on either the vertical or horizontal primary collimator
- Impact only on primary betatron collimators

1 μm impact on collimator

FLUKA model of collimators

- All collimators composed of:
 - Two jaws
 - Frame
 - Vacuum tank (LHC design)
- Absorber length:
 - Active length given in twiss file: 25 cm for primary, 30 cm for secondary
 - Tapers on sides 12.5 degrees
 - Total length ~37 cm (primary), 42 cm (secondary)
- Transverse cross section (excluding frame)
 - 6 cm width
 - 2.5 cm height
- Materials used:
 - Absorber is Graphite at 1.8 g/cc for primary
 - TZM at 10.22 g/cc for secondary
 - Frame always TZM

Tunnel and machine model

- Inner bore of 5.5 m diameter, outer wall at 7 m (1.5 m concrete wall)
- Circular vacuum chamber:
 - 6 cm diameter inner
 - 2 mm thick copper walls
- No supports
- Quadrupole magnet design from B. Humann (as in the arcs)
- Analytical quadrupole field in the beam pipe

Relative Power Deposition

Collimators and radiation studies in FCC-ee

Absolute Power Deposition

Assumptions:

- Bunch intensity: 2.16×10^{11} •
- Bunches per beam: 11200
- Loss decay time: 5 minutes

Collimator power loss: 37.19 kW

Shower absorbers

- Shower absorbers are inserted right after the primary collimation system
- Gaps of shower absorbers larger than secondary collimators (2.5 mm)
 - To be matched to beam dynamics

Relative Power Deposition

SHOWER ABSORBERS

Effects of impact parameter

Extra-Extra slides

Electron fluence inside vacuum chamber

Electron fluence after horizontal impact (pipe)

Electron fluence after horizontal impact (pipe)

Electron fluence inside tunnel

Electron fluence inside tunnel

ectron fluence after vertical impact w/ shower absorbers (tunnel)

Shower absorbers fluence

- The presence of shower absorbers significantly reduces the fluence of secondary particles
- Optimization of the position/number of absorbers can be performed next

Photons

Electron fluence after horizontal impact

Scattered beam shape

