Impacts on BDSIM-Geant4 collimators

- FCC-ee collimation simulations are being performed with the Xsuite-BDSIM coupling simulation tool
 - First developed by A. Abramov for the FCC collimation simulation needs
- Xsuite-BDSIM now integrated and available with the Xcoll package
 - Xcoll is the collimation package belonging to the Xsuite collection of Python packages
 - Xcoll interface to BDSIM-coupling already used in full production for the latest FCC-ee collimation studies

- Self-written functions (e.g., collimator installation, collimator settings assignment, generation of impacting distribution at the collimators, interpolation of loss location, ...) replaced with standardized Xcoll functions
- Xcoll has a wider community of users
- Profit of features already available in Xcoll, e.g., impact records

 F. Van der Veken, <u>Introducing Xcoll: A Streamlined Approach to Collimation and Beam Loss Simulations</u> <u>Using Xsuite, ICAP'24</u>

Impact Table

- Table to log impacts, interactions, and exits
- Full table available in Everest
- Impacts available in Geant4 coupling
- WIP for a FLUKA table

	interaction_type	id_before	s_before	x_before	px_before	id_after	s_after	x_after	px_after
6847	Enter Jaw L	2227	0.538346	0.000000e+00	0.000015	-1	-1.000000	-1.000000e+00	-1.000000
6848	Multiple Coulomb Scattering	2227	0.538346	0.000000e+00	0.000015	2227	0.574394	5.094311e-07	0.000013
6849	Single Diffractive	2227	0.574394	5.094311e-07	0.000013	2227	0.574394	5.094311e-07	-0.000007
6850	Multiple Coulomb Scattering	2227	0.574394	5.094311e-07	-0.000007	2227	0.580198	4.678767e-07	-0.000007
6851	PP Elastic	2227	0.580198	4.678767e-07	-0.000007	2227	0.580198	4.678767e-07	0.000024
6852	Multiple Coulomb Scattering	2227	0.580198	4.678767e-07	0.000024	2227	0.600000	9.381799e-07	0.000024
6853	Exit Jaw	2227	0.600000	9.381799e-07	0.000024	-1	-1.000000	-1.000000e+00	-1.000000

F. Van der Veken, Introducing Xcoll: A Streamlined Approach to Collimation and Beam Loss Simulations
Using Xsuite, ICAP'24

- First FCC-ee impact tables produced for different beam loss scenarios
 - Horizontal betatron losses of the positron beam (B1H) \rightarrow provided to the FLUKA team (S. Marin, A. Lechner)

- Vertical betatron losses of the positron beam (B1V)
- Beam-gas (bremsstrahlung) losses of the positron beam
- Spent beam losses for the positron beam
 - > Likely not realistic impacts due to large vertical emittance blow-up detailed checks ongoing

Horizontal betatron losses of the positron beam (B1H) : horizontal primary collimator TCP.H.B1

Horizontal betatron losses of the positron beam (B1H) : horizontal secondary collimator TCS.H1.B1

Horizontal betatron losses of the positron beam (B1H) : horizontal secondary collimator TCS.H2.B1

Update on vertical beam size blow-up with beam-beam and collimation insertion optics

FCC-ee Z spent beam losses: results

The loss maps are scaled to the **combined nominal beam lifetime** from lattice, SR, beamstrahlung and luminosity

Lifetime for the Z mode [32]

- Losses intercepted by betatron collimators in PF (43%)
- Large losses on the TCT.V and SR.V collimators in IPD, IPA and IPJ with minimal losses in IPG
 - Up to 2.1 kW on a vertical TCT and 300 W on a vertical SR collimator
 - Likely single-pass losses that cannot be intercepted by the halo collimation system in PF
 - Physics debris collimators (like in the CERN LHC) might be an option

FCC-ee Z-mode spent beam losses: results

- High losses observed in the V plane
 - Driven by a vertical emittance blow-up due to an interplay between the collimation insertion optics and beam-beam interactions

Transverse distribution after 500 turns

- Inclusion of collimation insertion optics breaks the super-periodicity of the lattice
 - New resonance lines appear
- Because of beam-beam interactions a larger region of tune space is probed
- Avoiding such new resonances might become an additional design constraint for collimation optics

