

Collimators and radiation study in FCC-ee

Stefano Marin, Anton Lechner

Oct 25, 2024

Outline

- How does the material of the primary collimator affect its performance as a beam dump? VERY SOON
- How does the length of the secondary collimators affect the power to the tunnel/vacuum chamber?
- What proportion of the energy is going to tunnel/vacuum chamber?
- Does adding a collimator between the primary collimators help reduce power absorption in the environment?
- Realistic impact parameter

Length variation

Length variation TCS and SHOWABS

Vacuum/Tunnel

In the cases we have explored the copper vacuum chamber receives between 1/3 and ½ of the power absorbed by the environment (most of the rest goes to the concrete wall and floor)

Further shower absorber optimization

Shower absorber effects (optimized two SA)

Extra: Impact distribution and questions

3D Histogram of X_before vs Y_before for tcp.v.b1

3D Histogram of X_before vs Y_before for tcp.h.b1

Collimators and radiation studies in FCC-ee

2D Histogram of x_start vs y_start for tcp.v.b1

What are these distributions describing, and why no vertical gap + positive x only?

Any information on the first impact distribution?

40

Counts