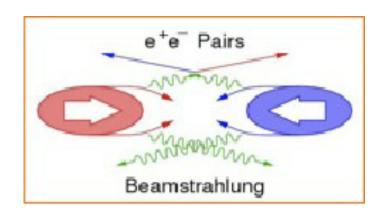


Reconstruction Tools in Key4hep

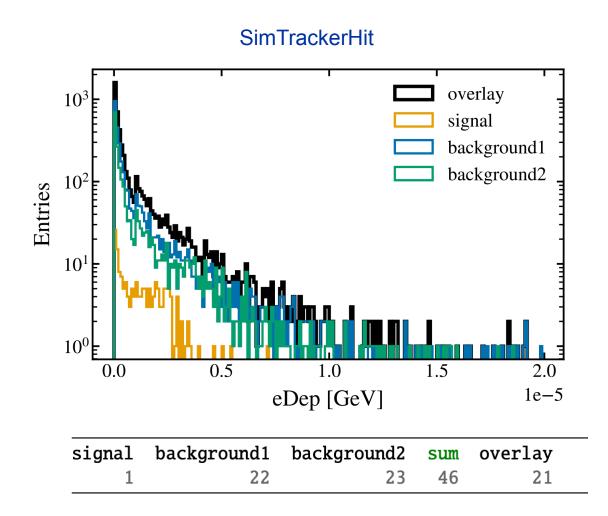
Swathi Sasikumar, Andre Sailer, Juan-Miguel Carceller 10 Oct 2024

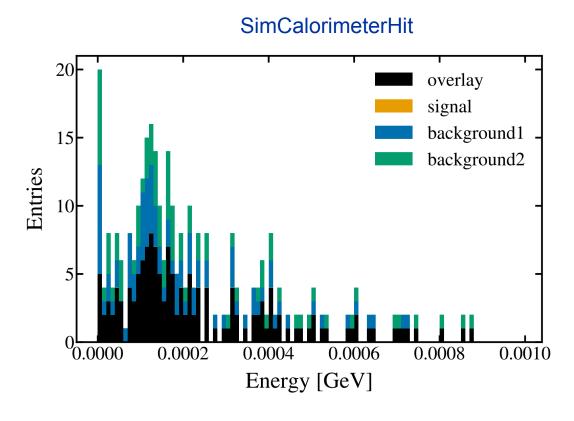

Key4hep

- Key4hep project offers a flexible framework that allows different experiments to benefit from its synergy
- Full simulation studies essential to estimate physics reach
- Main goal: Developing optimal tools for reconstruction
 - Important to correctly treat beam backgrounds
 - Sophisticated particle flow clustering algorithms for optimal jet energy resolutions

Photon-Photon Interactions at e+e- colliders

- ◆ e⁺e⁻ beams are accompanied by real and virtual photons
- ullet Photons interact simultaneously with e⁺e⁻ creating $\gamma\gamma \to low$ p_T hadrons, and coherent and incoherent pair backgrounds
- Important to overlay these backgrounds correctly on important physics events
- Number of beam backgrounds/bunch crossing depends on the beam parameters and the centre-of-mass energy
- Beam backgrounds overlaid on physics events based on Poissonian distribution




Beam background overlay algorithm in Key4hep

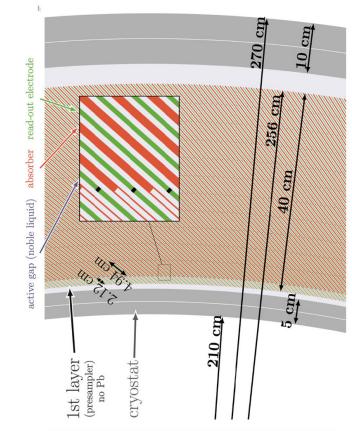
- The overlay algorithm from iLCSoft used during reconstruction of events
- Simulated $\gamma\gamma \rightarrow$ low pT hadron events and e⁺e⁻ pair background events overlaid on simulated physics processes in three ways:
 - MCParticles: MCParticles from beam backgrounds are overlaid on MCParticles from signal
 - SimTrackerHits: are overlayed if they are in a certain time window
 - SimCalorimeterHits: are overlayed only if they have contributions in a certain time window. If a signal hit and a background hit have the same cellID, they are combined into a single hit
- The OverlayTiming processor from iLCSoft ported to Gaudi by J-M Carceller

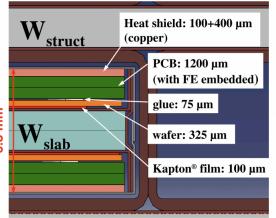
Overlay on SimTrackerHit and SimCaloHits

signal	background1	background2	sum	overlay
0	86	78	164	149

Native Overlay algorithm in Key4hep

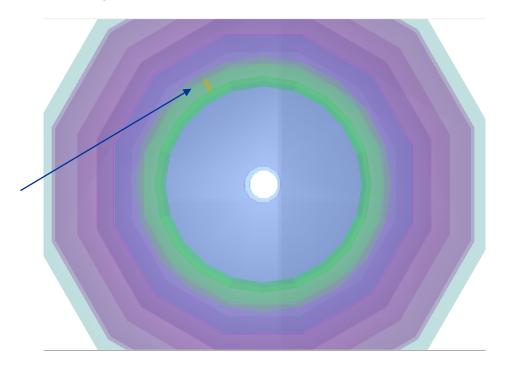
- For MCParticles and SimTrackerHits, there is an isOverlay() method that tells us if they come from background or signal
- Relations in the new objects point to the new objects: a SimTrackerHit from signal will point to the corresponding MCParticle in the overlayed collection, the same for background
- Ported OverlayTiming Gaudi algorithm from iLCSoft (J-M Carceller): Currently PR in Key4hep/k4reco
- Background Overlay algorithm ready to be tested (and reviewed)
- Looks OK so far, still need to check some details

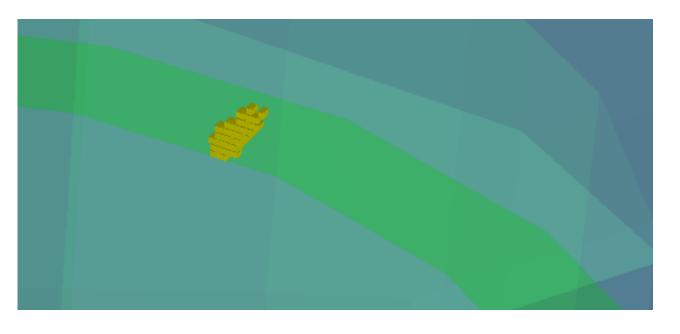

Particle Flow Algorithm


- Events correctly processed with overlaying beam backgrounds correctly facilitating further optimisation of the detector
- Important ingredient for performance of future Higgs factory experiments: particle flow reconstruction for optimal jet energy resolutions
- Pandora particle flow algorithm (PandoraPFA) developed to study particle flow calorimetry
 - PandoraPFA combines the tracking information with hits in high granularity calorimeters
 - Reconstruction of every individual particles in the event
 - DDMarlin Pandora is the Marlin integration of Pandora to iLCSoft framework to study particle flow at high granularity CALICE calorimeters

Geometry information for PandoraPFA

- DDMarlinPandora designed with high granularity
 CALICE sandwich calorimeters
- LAr calorimeter has a very different structure : an ensemble of different materials in a cell varying in density and homogeneity
- Density of material also varies from the inner radius to the outer radius of the barrel
- Moreover, the inclination of the segments play a role
- Challenging to calculate radiation length or interaction length for LAr

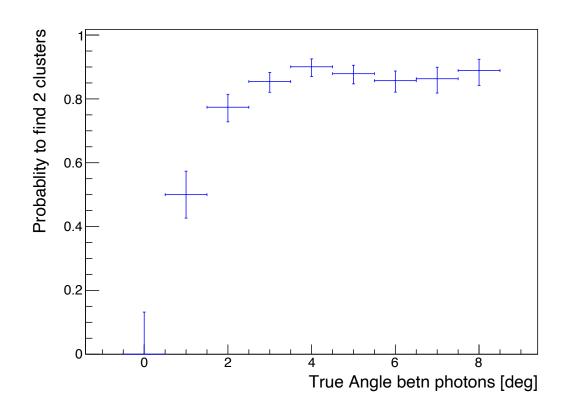



Material Manager

- Such information for the LAr calorimeter is obtained in a more dynamic way
- MaterialManager is a tool from DD4hep that helps extracting the necessary information between arbitrary space points
- MaterialManager returns the list of materials and their thickness along the vector
- By averaging the material between the arbitrary points material properties of the averaged material was extracted
- \bullet Crosscheck: The sum of the radiation lengths across the layers sums up to 22 X_0 as expected for the calorimeter
- This approach allows for dynamic determination of material properties irrespective of the detector model

Pandora clusters in LAr

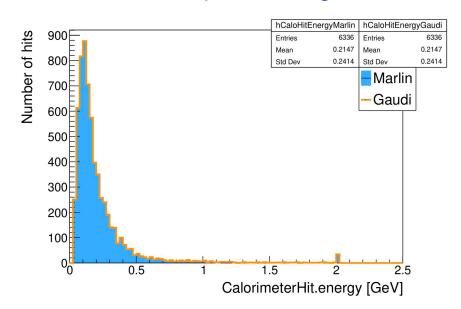
- 500 events of photons using a particle gun was simulated at an energy of 10 GeV for the CLD_LAr detector model
- By running reconstruction with all the digitized hit collections provided to Pandora, Pandora particle flow objects (PandoraPFO's) from LAr calorimeter could be observed

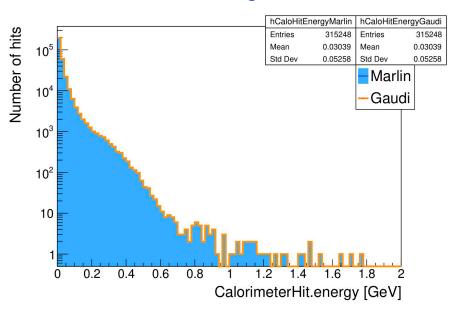


Probability to find two photon clusters

- To optimise the cluster reconstructions study how well the photon clusters can be separated
- The cell size of ALLEGRO- LAr is 2 x 2 cm²
- The Molière radius for LAr calorimeter is 4cm which is much bigger than the CALICE calorimeters (9mm)
- The photons need to be at least 5-6 cms apart for a high probability to be separately clustered
- Work in progress

Porting of DDMarlinPandora


- DDMarlinPandora a package in iLCSoft with multiple processors
- To integrate into native Key4hep it is being ported to Gaudi
- Started with two digitisers: DDSimpleMuonDigi (muons) and DDCaloDigi(ECal, HCal) parts of DDMarlinPandora
- Largely ported by S.Sasikumar and, finalised and validated by K.Kostova
 - O DDSimpleMuonDigi: A simple processor for the digitisation of muons
 - O DDCaloDigi: More complex processor for digitisation of particles in ECal and HCal
- DDSimpleMuonDigi already integrated to <u>k4GaudiPandora</u> and a <u>PR</u> is open for DDCaloDigi close to be merged


Validation of digitisers in DDMarlinPandora

- 1000 events of muons and photons simulated for 10 GeV using particle gun (K. Kostova)
- Same simulated input file used for digitising using Marlin processors and ported Gaudi algorithms
- The distributions well overlapped on each other porting successful
- The final DDPandoraPFA still needs to be ported

DDSimpleMuonDigi

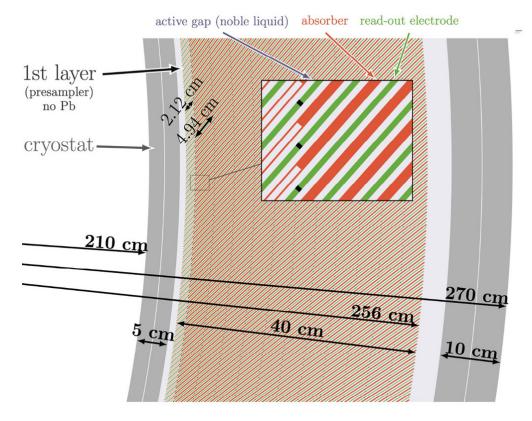
DDCaloDigi

Summary

- Key4hep actively developing and integrating reconstruction tools
- Overlay algorithm successfully ported and ready to be used
- Dynamic ways to obtain important information about the material properties of the calorimeters modelindependently
- Two digitisers (DDSimpleMuonDigi and DDCaloDigi) of DDMarlinPandora successfully ported and validated

Acknowledgement:

This work is funded by CERN strategic R&D Programme on Technologies for Future Experiments

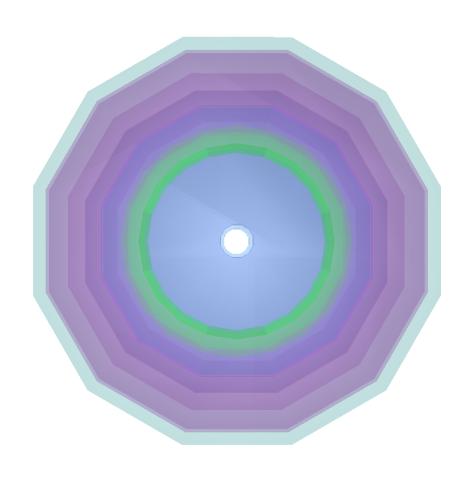


BACKUP SLIDES

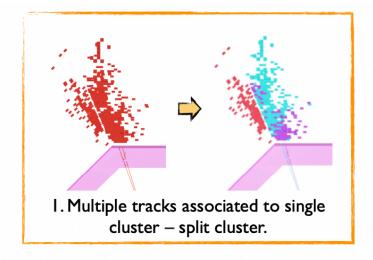
The Noble Liquid Argon Calorimeter

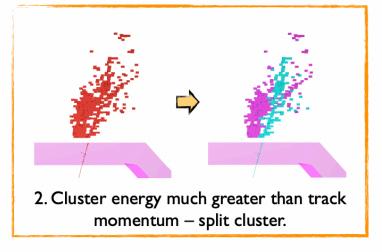
- The FCC detector ALLEGRO has chosen the Liquid Argon (LAr) calorimeter as its Electromagnetic calorimeter
- This calorimeter consists of liquid argon as the sensitive material with steel/Pb absorbers and readouts inclined at an angle of 50 degrees wrt the radius
- The LAr calorimeter has 12 different layers
- Makes a good candidate studying Pandora PFA on a completely different detector model

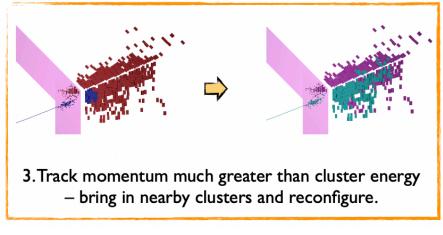
Pandora PFA and Layered Calorimeter Data

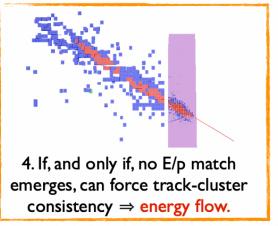

- PandoraPFA uses material properties e.g. radiation lengths and interaction lengths to determine the depth of the particle shower in the detector
- Particle flow clustering with Pandora uses the extensions attached to the detector geometries to provide the properties of the calorimeter
- The DD4hep::rec::LayeredCalorimeterData provides details like radiation length, interaction length and dimensions to the reconstruction algorithms

```
dd4hep::rec::LayeredCalorimeterData::Layer caloLayer;
caloLayer.distance = rad_first;
caloLayer.inner_nRadiationLengths = value_of_x0/2.0;
caloLayer.inner_nInteractionLengths = value_of_lambda/2.0;
caloLayer.inner_thickness = difference_bet_r1r2/2.0;
```

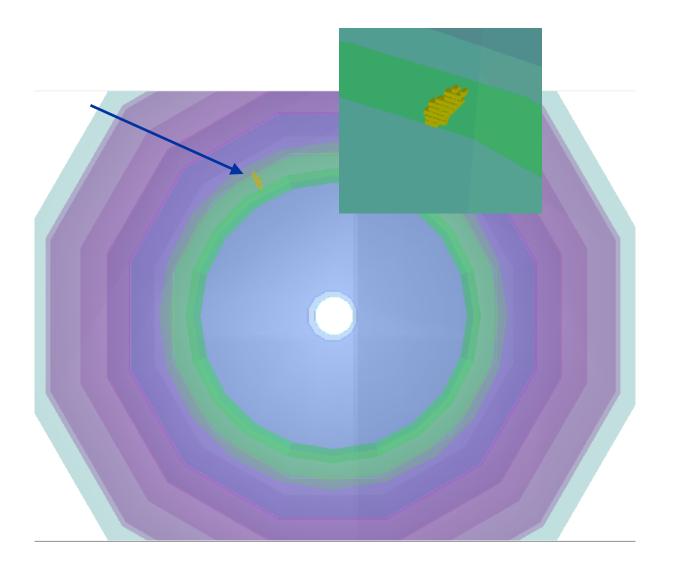



Geometry Adaptations to CLD


- Challenge no full simulation for ALLEGRO in Key4hep yet
- Need tracks for Pandora PFA
- Using CLD detector as a base for full simulation and reconstruction a detector model as CLD_o4_v05 was created with LAr calorimeter as the ECAL
- The LAr ECal is almost three times the size of the CLD ECAL
- To include LAr instead of the CLD ECAL the geometry of the detector needs to be adapted to avoid the overlaps between the subdetectors
- HCAL, Solenoid and the Yoke moved out further to accommodate LAr in the detector



Reclustering Strategies



Evidence of association: Nearby 2 GeV 2 GeV cluster 2 GeV 2 GeV E: 7 GeV 7 GeV 7 GeV 7 GeV cluster 9 GeV 9 GeV 9 GeV p: 9 GeV track Small distance of Multiple layers in Small distance to Large fraction of closest approach track extrapolation energy in cone close contact

