

Radiation Protection Considerations for HI-ECN3

<u>C. Ahdida</u>, G. Mazzola, G. Dumont WP6 - Radiation Protection & Safety

ESS - CERN Meeting, ESS, Lund, Sweden 20th September 2024

1. Overview of RP Challenges at HI-ECN3

2. Target Complex Design Optimization

3. Target Studies

HI-ECN3 at ECN3

TCC8 cross-section

Key beam parameters of BDF/SHiP

	BDF
Intensity (p/spill)	4×10 ¹³
Spill duration (s)	≥1
Cycle length (s)	≥7.2
Avg. beam power (kW)	356
Average intensity (p/s)	≤5.6×10 ¹²
Annual POT	4×10 ¹⁹
Duration (years)	15
Total POT	6×10 ²⁰

- High Intensity ECN3 (HI-ECN3) project for a new state-of-the-art high intensity experimental facility in ECN3
 - exploiting the available high intensity SPS 400 GeV/c proton beam
 - benefiting from an existing cavern of comfortable size incl. its infrastructure
 - using the advantage of the shielding created by the soil

RP challenges

- High beam energy and intensity as well as high POT leading to high prompt radiation and activation levels
- Proximity to surface, experimental and public areas
- Losses during beam transfer (not covered here)

Target Complex Optimization

BDF/SHiP design optimization

RP studies based on FLUKA MC simulations were performed for a design optimization of BDF/SHiP@HI-ECN3

ALARA approach

Optimization required to ensure that exposure of personnel to radiation and radiological impact on environment are As Low As Reasonably Achievable

PROMPT RADIATION

Reduce prompt radiation to comply with radiation area classification in the surrounding accessible areas as well as the 1 mSv limit at the CERN fence

RESIDUAL RADIATION

Limit activation of target and experimental area to reduce residual dose rates to be compatible with an adequate area classification

AIR AND SOIL ACTIVATION

Reduce activation of air and its releases into the environmental. Limit soil activation (³H<1000 Bg/kg, ²²Na<50 Bg/kg) and transfer to groundwater

ENVIRONMENTAL IMPACT

Reduce environmental impact from prompt radiation and releases of activated air to fulfill CERN's dose objective for the public of <10 uSv/year

Radiation area classification

	Area	Annual dose limit (year)	Ambient dose equivalent rate		Airborne activity concentration	Surface contamination	
		ų į	permanent occupancy	low occupancy			
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h	0.05 CA	1 CS	
	Supervised	6 mSv	3 μSv/h	15 µSv/h	0.1 CA	1 CS	
Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	0.1 CA	1 CS	a a
ation	Limited Stay	20 mSv	-	2 mSv/h	100 CA	4000 CS	ed Are
Radi	High Radiation	20 mSv		100 mSv/h	1000 CA	40000 CS	ontroll
	Prohibited					> 40000 CS	ŭ

BDF/SHiP FLUKA model

HI CN3

- A detailed BDF/SHiP target complex together with the muon shield was implemented in FLUKA
- Optimized BDF dump with reduced shielding and re-use of existing, already activated TCC8/TT7 shielding blocks, while maintaining SHiP physics performance
- Shielding embedded in vacuum vessel
- FLUKA geometry includes the full underground TCC8/ECN3 cavern and surrounding galleries, tunnels, rooms, etc.
- Ground profile data from CERN's Geographic Information System and technical drawings were used to model the surrounding ground

H*(10) [uSv/h H*(10) [uSv/h] 1000 1000 106 10⁶ y [cm] y [cm] 104 104 500 500 10² 10² 100 100 0 0 10-2 10-2 -500 -500 10-4 10^{-4} (-20 cn x < 80 cm) (13260 cm < z < 13380 cm) 13000 14000 -1000 -500 1000 500 z [cm] x [cm] Shielding design is well optimized for the prompt radiation

Annual limit of Non-designated Area on CERN domain and at CERN fence (1 mSv/y) as well as dose objective for members of the public (10 uSv/y) is by far met

ESS-CERN Meeting, 20 September 2024

8

2.5 µSv/h

¥

1500

2000

Prompt radiation in target area

Avg. intensity of 5.6×10^{12} p/s

Cross-sectional view

HI CN3

Side view

(13260

500

y [cm]

1000

า < z < 134380 c<mark>m</mark>)

Along y-axis

1014

1012

10¹⁰

108

[4//NSH] (01)*H 10⁴ 10²

10⁰

10-2

10-4

-500

ESS-CERN Meeting, 20 September 2024

6 mSv 3 µSv/h 15 µSv/h Simple Controlled 20 mSv 10 µSv/h 50 µSv/h Limited Stay 20 mSv 2 mSv/h 20 mSv Upstream of vessel w/o upstream shielding

dose lim (year)

1 mSv

Non-designated

permanent

occupancy

0.5 µSv/h

low occupancy

2.5 µSv/h

B

00

80

- After removal of the shielding upstream of the vessel, residual dose rates of several 100 µSv/h are expected
- Supervised Radiation Area on the sides
- Further optimization by movable shielding

Residual radiation in target area

Total PoT 6×10²⁰

Cross-sectional view, target level

Air and soil activation

Total PoT 6×10²⁰

Specific activity of ³H and ²²Na in the soil below TCC8 (most critical area)

- Thanks to floor iron shielding, ³H and ²²Na activity concentrations in the soil are below respective design limits
- A hydro-geological study is underway, which will allow to refine the design limits and possibly allow to reduce the required shielding

Annus dose limi (year) permanent low occupancy occupancy 0.5 µSv/h 2.5 µSv/h Non-designated 1 mSv 6 mSv 3 µSv/h 15 µSv/h imple Controlle 20 mSv 10 µSv/h 50 µSv/h B imited Stay 20 mSv 2 mSv/h 00 20 mSv 100 mSv/ 80

PoT 4×10¹⁹ per year **Air activation**

- Activation of air in target complex area were studied
- Production of radionuclides evaluated with FLUKA in combination with ActiWiz [5]

		CASE 1			CASE 2
Region	Volume [m ³]	Total A [Bq]	As [Bq/m ³]	$CA_{1} [\mu Sv/h]$	Total A [Bq]
Air	2127	3.69×10^6	1.73×10^3	3.34×10^{-1}	1.19×10^{11}

- **CASE 1**: build-up of radionuclides during operation w/o air extraction and 30 min cooldown time before air release
- **CASE 2**: constant immediate release of air (worst-case for upper limit of environmental impact)
- Flush of target complex with fresh air before any access to reduce specific airborne radioactivity to be compatible with 0.1 CA
- Exposure of members of the public due to air releases is negligible

¹ Person working 40h/w, 50w/y with standard breathing rate in activated air with CA = 1 receives 20 mSv

BDF Target Studies

BDF Target baseline design

Baseline Design (CDS) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the comprehensive design phase → C. Ahdida et al., SPS Beam Dump Facility - Comprehensive Design Study, CERN-2020-002
- Prototype + test with beam + Post irradiation examination

13 x TZM blocks (580 mm) 5x W blocks (780 mm)

Residual Radiation – baseline CDS target

Total PoT 4×10¹⁹ (5 yrs)

Longitudinal cut along the target

• The residual dose rates of the target were studied for 5 years of operation (now 15 yrs) and different cool-down times

- The highest dose rates are in the order of 100 Sv/h after 4 hours of cooling and a few Sv/h after 1 year
- Even after 30 years, dose rates at 40 cm still of the order of a few mSv/h → dedicated storage place in facility for irradiated target
- For radioactive transport the max. dose rate level at any point on the external surface of a package shall not exceed 2 mSv/h
- Thick iron cask (~30 cm thick) for transportation and storage as well as during handling

CDS target radionuclide inventories

Total PoT 2×10²⁰ (5 yrs)

LA multiples of BDF target materials

Main contributors (>1%), sum for all radionuclides

W

Radionuclide	Half-life	Multiple of LA value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \mathrm{y}$
Gd-148	74.60y	1.5E+08	1.5E+08	1.4E+08	1.1E+08
Yb-169	32.0d	3.2E+06	2.3E+03	2.9E-28	6.8E-97
Hf-172	1.87y	4.9E+07	3.5E+07	1.2E+06	7.5E+02
Hf-175	70.0d	3.1E+06	1.1E+05	8.4E-10	3.4E-41
Ta-182	114.7d	9.5E+06	1.3E+06	5.0E-02	4.7E-02
W-185	75.1d	3.2E+07	1.5E+06	1.0E-07	5.5E-37
Sum of all		2.6E+08	1.9E+08	1.4E+08	1.1E+08

Та

Radionuclide	Half-life	Multiple of LA value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30y$
Gd-148	74.60y	1.9E+07	1.9E+07	1.7E+07	1.4E+07
Hf-172	1.87y	6.4E+06	4.6E+06	1.6E+05	9.9E+01
m-Hf-178	4s	8.6E+05	8.4E+05	6.9E+05	4.4E+05
Ta-182	114.7d	6.6E+08	8.8E+07	2.1E-01	1.5E-20
Sum of all		6.9E+08	1.1E+08	1.8E+07	1.5E+07

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red

Total PoT 2×10²⁰ (5 yrs) + 1 month cool-down

Target	Material	Mass [kg]	Multiple LL	Multiple LA	A [Bq]
	W	695	1.9E+08	2.6E+08	9.2E+14
CDS	TZM	271	1.1E+09	8.4E+07	1.8E+14
	Та	28	1.7E+11*	6.9E+08	9.8E+14

*Dominated (99.9%) by Ta-182 (115 d half-life)

TZM

Radionuclide	Half-life	Multiple of LA value			•
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
H-3	12.33y	8.2E+04	7.8E+04	4.7E+04	1.5E+04
Si-32	132.00y	7.0E+03	7.0E+03	6.6E+03	6.0E+03
Ti-44	60.00y	2.4E+04	2.4E+04	2.2E+04	1.7E+04
Co-60	5.27y	6.8E+05	6.0E+05	1.8E+05	1.3E+04
Zn-65	244.2d	3.9E+05	1.5E+05	1.4E+01	1.3E-08
Ge-68	271.0d	1.2E+06	5.2E+05	1.2E+02	9.0E-07
Se-75	119.6d	8.5E+05	1.2E+05	6.6E-04	2.8E-22
Sr-82	25.6d	8.8E+06	1.0E+03	2.0E-36	1.9E-122
Rb-83	86.2d	1.6E+06	1.1E+05	3.7E-07	1.2E-32
Sr-85	64.8d	1.4E+06	3.8E+04	2.2E-11	2.8E-45
Zr-88	83.0d	2.2E+07	1.3E+06	1.6E-06	5.4E-33
Y-88	106.6d	9.4E+06	3.1E+06	2.9E-03	7.1E-24
Sr-90	28.79y	4.7E+04	4.6E+04	3.7E+04	2.3E+04
m-Nb-91	60.9d	1.3E+07	2.8E+05	1.6E-11	1.3E-47
Nb-91	680.00y	1.6E+05	1.7E+05	1.7E+05	1.6E+05
m-Nb-93	16.13y	1.6E+05	1.6E+05	1.1E+05	4.9E+04
Mo-93	3999.92y	1.1E+04	1.1E+04	1.1E+04	1.0E+04
Nb-94	19989.57y	7.2E+03	7.2E+03	7.2E+03	7.2E+03
Zr-95	64.0d	1.3E+07	3.5E+05	1.3E-10	6.0E-45
Nb-95	35.0d	7.2E+06	1.9E+05	6.9E-11	3.3E-45
Sum of all		8.4E+07	7.5E+06	5.9E+05	3.1E+05

Prototype Target Tests

- BDF target prototype w/ in total 14 h irradiation in TCC2, leading to 2.4E16 PoT
- Target activation was measured and compared to FLUKA simulations showing excellent agreement
- Cooling water activation was estimated w/ FLUKA
- Estimated residual dose rate after 1h of cooling at 40 cm from the cartridge is 18.7 mSv/h, while the PMI monitor measured 16.9 mSv/h
- Both samples showed the presence of high-Z spallation products some of them could have been produced in the target materials
- Water-cooling filter with debris was analysed via EDX
 - No peaks were found for Ta, W, Mo or Ti
 - Metallic particle (Al, Ca, Fe, Cl, Fe, Cr)

Benchmark of residual dose rates (mSv/h)

Position	Ambient dose rate	Ratio	
	Predicted (FLUKA) Measured		Predicted/Measured
contact	25.15 ± 0.01	26 ± 1	0.97 ± 0.04
40 cm	4.42 ± 0.01	5 ± 1	0.9 ± 0.2

Radionuclides in water samples

Radionuclide	Activity [Bq/l]		
	Sample 1	Sample 2	
H-3	$1.96 imes 10^5 \pm 4.0\%$	$4.8 imes 10^5 \pm 4.0\%$	
Be-7	$7.7\times10^3\pm6.6\%$	$2.37 \times 10^{3} \pm 6.8\%$	
ScjSc44m	$2.49 \times 10^{1} \pm 6.9\%$	$4.85 \times 10^{1} \pm 5.7\%$	
Sc-46	$1.51 \times 10^1 \pm 7.8\%$	$6.88 imes 10^1 \pm 6.8\%$	
Sc-47	-	$1.17 \times 10^{2} \pm 9.2\%$	
Y-87	$1.45 \times 10^{1} \pm 8.4\%$	${4.85\times10^{1}\pm6.2\%}$	
Ru-97	-	$1.27\times10^1\pm9.3\%$	
Ag-106m	$1.41 \times 10^{1} \pm 9.6\%$	-	
In-111	-	$1.13 \times 10^{1} \pm 8.5\%$	
Eu¡Gd146	-	$1.19 \times 10^{1} \pm 8.3\%$	
Gd-149	-	$3.79 \times 10^1 \pm 8.1\%$	
Tb-155	-	$4.57 \times 10^{1} \pm 7.0\%$	
Tm-166	-	$7.05\pm7.7\%$	
Tm-167	-	$7.14 \times 10^{1} \pm 8.9\%$	
Yb-169	-	$3.13 \times 10^1 \pm 7.8\%$	
Lu-171	-	$8.51 \times 10^1 \pm 6.8\%$	

Water samples were analysed by liquid scintillation and gamma spectrometry

Alternative BDF target design studies

Baseline Design (CDS) – Water cooled, W + TZM cladded w/ Ta2.5W

 Investigation of alternative claddings (Nb, Nb-1Zr, Nb-10Hf-1Ti)

Alternative designs currently being studied in the TDR

W Helium cooled Target

Investigation of radionuclide inventories

Enclosed compact Cu + W Target

 Expected to be less critical from a radiological point of view

Alternative Claddings

Cladding materials:

- 1. Tantalum –16.6 g/cm3
- 2. Nb (ASTM R04210 Type 2) 8.6 g/cm3
- 3. Nb-1Zr (ASTM R04261 Type 4) 8.6 g/cm3
- 4. Nb-10Hf-1Ti (ASTM R04295) 8.86 g/cm3

Total PoT 2×10²⁰ (5 yrs)

	Activity/LL -	Activity/LL -	Max. LMA	RN exceeding	
Material	5y	300y	fraction	LMA	RW Class.
Та	1.30E+07	7.72E+03	7.58E+01	H-3 (75), Gd-148 (1.65)	FA-MA (CH)
Nb	1.62E+07	7.36E+06	6.19E+03	Nb-94 (6190), H-3 (65)	FA-MA (CH)
Nb-1Zr	1.60E+07	7.28E+06	5.23E+03	Nb-94 (5230), H-3 (66)	FA-MA (CH)
Nb-10Hf-1Ti	1.55E+07	6.22E+06	6.12E+03	Nb-94 (6120), H-3 (65)	FA-MA (CH)
Nb-94 half-life of 20300 yrs					

Waste classification as FA-MA waste to be disposed of in Switzerland (no open pathway so far for such activation of Ta/Nb)

Total PoT 2×10²⁰ (5 yrs), 1y cool-down **Residual dose rates (uSv/h)**

Includes residual dose rates from surrounding material

No difference in the residual dose rates for the various Nb claddings

* LMA: Acceptance Activity Limits, if activity levels < LMA candidate for elimination in France

Alternative BDF target design studies

Baseline Design (CDS) – Water cooled, W + TZM cladded w/ Ta2.5W

 Investigation of alternative claddings (Nb, Nb-1Zr, Nb-10Hf-1Ti)

Radionuclide inventories comparison

Total PoT 2×10²⁰ (5 yrs) + 1 month cool-down

Target	Material	Mass [kg]	Multiple LL	Multiple LA	A [Bq]
Large W	W	3178	1.3E+08	8.2E+08	3.7E+15
	TZM ¹	219	4.0E+07	1.8E+06	5.0E+12
CDS	W	695	1.9E+08	2.6E+08	9.2E+14
	TZM	271	1.1E+09	8.4E+07	1.8E+14
	Та	28	1.7E+11*	6.9E+08	9.8E+14
*Dominated (99.9%) by Ta-182 (115 d half-life) ¹ TZM cladding lay					

LA for short-cool-down times:

- For 1h (4h), **Hf-178m** (4s halflife) produced via Ta-178m (2.36h half-life) is dominant (48%)
- For 1d, **Gd-148** (74y half-life) becomes most important (38%) (as for 1 month)

Possible radioactive volatile chemicals	
H ₂	
H ₂ O	Also Iodine can
H ₂ O ₂	make volatile molecules with
NH ₃	Cobalt,
HNO ₃	Hafnium and
Re ₂ O ₇	Tantalum
WO ₃	

- See backup slides for list of radionuclides
- When comparing the W parts of the two targets, the multiple of LA and total A are a factor 3-4 higher (mainly due to the higher mass) for the large W target than the CDS target
- There are only few percent differences between the TZM quantities
- The Ta cladding of the CDS target exhibits mostly the highest values

Summary & Questions

- Main radiological aspects regarding an implementation of BDF/SHiP in ECN3 were investigated
- First shielding design for an optimization of exposure of personnel to radiation and radiological impact on environment
- Further detailed studies and optimization in the Technical Design Phase until end of 2025 to achieve first beam on target in 2030
- \circ Questions
 - What potential release of radionuclides from the target to the He loop do you expect? How do you plan to mitigate the contamination?
 - How do you account for H-3 out-diffusion?
 - What are your plans for radioactive waste management (characterization, conditioning, waste packaging, shielding, elimination)
 - Do you foresee any destructive works on the activated target/surrounding elements?

home.cern

Bibliography

[1] Website: https://fluka.cern

- [2] C. Ahdida, D. Bozzato, D. Calzolari, F. Cerutti, N. Charitonidis, A. Cimmino, A. Coronetti, G. L. D'Alessandro, A. Donadon Servelle, L. S. Esposito, R. Froeschl, R. García Alía, A. Gerbershagen, S. Gilardoni, D. Horváth, G. Hugo, A. Infantino, V. Kouskoura, A. Lechner, B. Lefebvre, G. Lerner, M. Magistris, A. Manousos, G. Moryc, F. Ogallar Ruiz, F. Pozzi, D. Prelipcean, S. Roesler, R. Rossi, M. Sabaté Gilarte, F. Salvat Pujol, P. Schoofs, V. Stránský, C. Theis, A. Tsinganis, R. Versaci, V. Vlachoudis, A. Waets, M. Widorski, *New Capabilities of the FLUKA Multi-Purpose Code,* Frontiers in Physics 9, 788253 (2022)
- [3] G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. Garcia Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, *Overview of the FLUKA code*, Annals of Nuclear Energy 82, 10-18 (2015)
- [4] V. Vlachoudis, *FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA*, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009)
- [5] H. Vincke, C. Theis, *ActiWiz optimizing your nuclide inventory at proton accelerators with a computer code,* Progress in Nuclear Science and Technology (2014)
- [6] P. Vojtyla, Models for assessing the dosimetric impact of releases of radioactive substances from CERN facilities to the environment Air, CERN Internal report (2021)

Activities multiples – CDS target

Total PoT 2×10²⁰ (5 yrs)

Activities of BDF target materials

W

Radionuclide	Half-life	Activity [Bq]			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
H-3	12.33y	6.2E+12	5.9E+12	3.6E+12	1.2E+12
Pm-145	17.70y	6.6E+10	8.1E+10	7.0E+10	3.2E+10
Gd-148	74.60y	3.0E+10	3.0E+10	2.7E+10	2.3E+10
Tb-157	99.00y	2.8E+10	2.8E+10	2.6E+10	2.3E+10
Lu-172m	3.7min	4.9E+12	3.5E+12	1.2E+11	7.5E+07
Lu-172	6.7d	5.0E+12	3.5E+12	1.2E+11	7.6E+07
Hf-172	1.87y	4.9E+12	3.5E+12	1.2E+11	7.5E+07
Lu-173	1.34y	6.9E+12	4.3E+12	4.0E+10	1.3E+06
Hf-175	70.0d	1.9E+13	6.7E+11	5.0E-03	2.0E-34
Ta-178	9.3min	2.9E+13	6.3E+08	1.0E-37	1.9E-139
W-178	21.6d	2.9E+13	6.3E+08	1.0E-37	1.9E-139
Ta-179	1.61y	2.8E+13	1.9E+13	3.9E+11	7.2E+07
W-181	121.0d	1.0E+14	1.5E+13	1.0E+05	6.8E-14
Ta-182	114.7d	6.7E+12	8.8E+11	3.5E+04	3.3E+04
W-185	75.1d	6.5E+14	2.9E+13	2.0E+00	1.1E-29
Sum of all		9.2E+14	8.8E+13	4.6E+12	1.3E+12

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red

Main contributors (>1%), sum for all radionuclides

Та

Radionuclide	Half-life	Activity [Bg]			
		$T_c = 1 \text{m}$	$T_c = 1y$	$T_c = 10y$	$T_c = 30 \text{y}$
H-3	12.33y	7.8E+11	7.4E+11	4.4E+11	1.4E+11
Pm-145	17.70y	8.6E+09	1.0E+10	9.0E+09	4.1E+09
Gd-148	74.60y	3.8E+09	3.8E+09	3.5E+09	2.9E+09
Tb-157	99.00y	3.7E+09	3.7E+09	3.5E+09	3.0E+09
Lu-172	6.7d	6.7E+11	4.6E+11	1.6E+10	1.0E+07
m-Lu-172	3.7min	6.4E+11	4.6E+11	1.6E+10	9.9E+06
Hf-172	1.87y	6.4E+11	4.6E+11	1.6E+10	9.9E+06
Lu-174	3.56y	4.1E+10	3.8E+10	6.9E+09	1.4E+08
m-Hf-178	4s	1.7E+10	1.7E+10	1.4E+10	8.8E+09
n-Hf-178	31.00y	1.7E+10	1.7E+10	1.4E+10	8.8E+09
Ta-179	1.61y	3.5E+12	2.4E+12	4.9E+10	9.0E+06
Ta-182	114.7d	4.6E+14	6.1E+13	1.5E+05	1.0E-14
Sum of all		4.8E+14	6.7E+13	6.1E+11	1.7E+11

TZM

Radionuclide	Half-life	Activity [Bq]			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30y$
H-3	12.33y	8.2E+12	7.8E+12	4.7E+12	1.5E+12
Fe-55	2.73y	2.7E+11	2.1E+11	2.2E+10	1.4E+08
Zn-65	244.2d	7.8E+11	3.0E+11	2.7E+07	2.7E-02
Ga-68	1.1h	7.3E+11	3.1E+11	6.9E+07	5.4E-01
Ge-68	271.0d	7.3E+11	3.1E+11	6.9E+07	5.4E-01
m-Ge-73	0.5s	2.0E+12	1.1E+11	5.5E-02	2.4E-29
As-73	80.3d	2.0E+12	1.1E+11	5.5E-02	2.4E-29
Se-75	119.6d	2.5E+12	3.7E+11	2.0E+03	8.5E-16
Rb-82	1.3min	5.3E+12	6.0E+08	1.2E-30	1.2E-116
Sr-82	25.6d	5.3E+12	6.0E+08	1.2E-30	1.2E-116
Rb-83	86.2d	8.1E+12	5.5E+11	1.8E+00	5.9E-26
m-Kr-83	1.8h	6.1E+12	4.1E+11	1.4E+00	4.4E-26
Mo-93	3999.92y	4.2E+10	4.2E+10	4.2E+10	4.2E+10
Sr-85	64.8d	1.1E+13	3.1E+11	1.7E-04	2.2E-38
Zr-88	83.0d	2.2E+13	1.3E+12	1.6E+00	5.4E-27
Y-88	106.6d	1.9E+13	6.1E+12	5.7E+03	1.4E-17
m-Nb-91	60.9d	2.5E+13	5.5E+11	3.2E-05	2.6E-41
Nb-91	680.00y	1.6E+11	1.7E+11	1.7E+11	1.6E+11
m-Nb-92	10.2d	4.2E+12	4.9E+02	1.8E-95	-
m-Nb-93	16.13y	9.7E+11	9.3E+11	6.4E+11	2.9E+11
Nb-95	35.0d	2.9E+13	7.7E+11	2.8E-04	1.3E-38
Zr-95	64.0d	1.3E+13	3.5E+11	1.3E-04	6.0E-39
Sum of all		1.8E+14	2.2E+13	5.6E+12	2.1E+12

Multiples of Swiss Clearance Limits (LL) CDS Target

Total PoT 2×10²⁰ (5 yrs)

LL multiples of BDF target materials

W

Radionuclide	Half-life	Multiple of LL value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
H-3	12.33y	9.0E+04	8.5E+04	5.1E+04	1.7E+04
Co-60	5.27y	1.3E+05	1.2E+05	3.6E+04	2.6E+03
Ba-133	10.54y	8.8E+05	8.3E+05	4.6E+05	1.2E+05
Pm-145	17.70y	9.6E+03	1.2E+04	1.0E+04	4.6E+03
Eu-146	4.6d	1.9E+06	1.6E+04	5.1E-17	1.5E-62
Gd-146	48.3d	1.7E+06	1.4E+04	4.6E-17	1.4E-62
Gd-148	74.60y	4.3E+04	4.3E+04	4.0E+04	3.3E+04
Eu-150	36.36y	3.4E+03	3.4E+03	2.8E+03	1.9E+03
Lu-172	6.7d	7.1E+06	5.0E+06	1.8E+05	1.1E+02
Hf-172	1.87y	7.0E+05	5.0E+05	1.8E+04	1.1E+01
Lu-173	1.34y	9.9E+06	6.2E+06	5.8E+04	1.8E+00
Lu-174	3.56y	1.4E+05	1.3E+05	2.4E+04	4.9E+02
Hf-175	70.0d	2.7E+07	9.7E+05	7.2E-09	2.9E-40
Ta-178	9.3min	4.2E+06	9.1E+01	1.5E-44	2.7E-146
W-178	21.6d	4.2E+06	9.1E+01	1.5E-44	2.7E-146
Ta-179	1.61y	4.0E+06	2.7E+06	5.7E+04	1.0E+01
W-181	121.0d	1.5E+07	2.1E+06	1.4E-02	9.8E-21
Ta-182	114.7d	9.6E+07	1.3E+07	5.0E-01	4.7E-01
Re-184m	168.0d	3.2E+06	8.0E+05	1.0E+00	8.6E-14
Sum of all		1.9E+08	3.4E+07	9.6E+05	1.9E+05

Та

Radionuclide	Half-life		Multiple o	of LL value	
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30 \text{y}$
H-3	12.33y	2.8E+05	2.7E+05	1.6E+05	5.2E+04
Co-60	5.27y	4.8E+05	4.3E+05	1.3E+05	9.4E+03
Ba-133	10.54y	3.0E+06	2.8E+06	1.5E+06	4.1E+05
Pm-145	17.70y	3.1E+04	3.8E+04	3.3E+04	1.5E+04
Gd-148	74.60y	1.4E+05	1.4E+05	1.3E+05	1.0E+05
Eu-150	36.36y	1.2E+04	1.2E+04	1.0E+04	6.9E+03
Lu-172	6.7d	2.4E+07	1.7E+07	5.9E+05	3.6E+02
Hf-172	1.87y	2.3E+06	1.7E+06	5.9E+04	3.6E+01
Lu-173	1.34y	3.7E+07	2.3E+07	2.2E+05	6.8E+00
Lu-174	3.56y	1.5E+06	1.4E+06	2.5E+05	5.1E+03
m-Hf-178	4s	6.2E+04	6.1E+04	5.0E+04	3.2E+04
Ta-179	1.61y	1.3E+07	8.6E+06	1.8E+05	3.3E+01
Ta-182	114.7d	1.7E+11	2.2E+10	5.3E+01	3.7E-18
Sum of all		1.7E+11	2.2E+10	3.4E+06	6.5E+05

Pure alpha/beta emitters are shown in bold

Dominant radionuclide is shown in red Main contributors (>1%), sum for all radionuclides

TZM

Half-life	Multiple of LL value			
	$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30 \text{y}$
12.33y	3.0E+05	2.9E+05	1.7E+05	5.7E+04
2.60y	7.5E+05	5.9E+05	5.3E+04	2.6E+02
60.00y	6.3E+04	6.2E+04	5.6E+04	4.4E+04
83.8d	2.2E+07	1.4E+06	2.1E-06	1.3E-32
312.1d	1.4E+07	6.5E+06	4.4E+03	4.0E-04
5.27y	2.2E+06	2.0E+06	6.1E+05	4.4E+04
244.2d	2.9E+07	1.1E+07	1.0E+03	1.0E-06
86.2d	3.0E+07	2.0E+06	6.8E-06	2.2E-31
64.8d	4.1E+07	1.1E+06	6.4E-10	8.3E-44
106.6d	6.9E+08	2.3E+08	2.1E-01	5.2E-22
83.0d	8.0E+07	4.9E+06	6.0E-06	2.0E-32
28.79y	1.0E+04	1.0E+04	8.1E+03	5.0E+03
680.00y	6.0E+03	6.2E+03	6.1E+03	6.0E+03
16.13y	3.6E+05	3.4E+05	2.4E+05	1.1E+05
3999.92y	1.6E+04	1.6E+04	1.6E+04	1.5E+04
19989.57y	5.3E+04	5.3E+04	5.3E+04	5.3E+04
35.0d	1.1E+08	2.8E+06	1.0E-09	4.9E-44
64.0d	4.8E+07	1.3E+06	4.6E-10	2.2E-44
213995.36y	6.2E+03	6.2E+03	6.2E+03	6.2E+03
	1.1E+09	2.6E+08	1.2E+06	3.4E+05
	Half-life 12.33y 2.60y 60.00y 83.8d 312.1d 5.27y 244.2d 86.2d 64.8d 106.6d 83.0d 28.79y 680.00y 16.13y 3999.92y 19989.57y 35.0d 64.0d 213995.36y	Half-life $T_c = 1$ m 12.33y 3.0E+05 2.60y 7.5E+05 60.00y 6.3E+04 83.8d 2.2E+07 312.1d 1.4E+07 5.27y 2.2E+06 244.2d 2.9E+07 86.2d 3.0E+07 64.8d 4.1E+07 106.6d 6.9E+08 83.0d 8.0E+07 28.79y 1.0E+04 680.00y 6.0E+03 16.13y 3.6E+05 3999.92y 1.6E+04 1988.57y 5.3E+04 35.0d 4.8E+07 213995.36y 6.2E+03	Half-life Multiple of $T_c = 1$ m $T_c = 1$ y 12.33y 3.0E+05 2.9E+05 2.60y 7.5E+05 5.9E+05 60.00y 6.3E+04 6.2E+04 83.8d 2.2E+07 1.4E+06 312.1d 1.4E+07 6.5E+06 5.27y 2.2E+06 2.0E+06 244.2d 2.9E+07 1.1E+07 86.2d 3.0E+07 2.0E+06 64.8d 4.1E+07 1.1E+06 106.6d 6.9E+08 2.3E+08 83.0d 8.0E+07 4.9E+06 28.79y 1.0E+04 1.0E+04 680.00y 6.0E+03 6.2E+03 16.13y 3.6E+05 3.4E+05 3999.92y 1.6E+04 1.6E+04 1988.57y 5.3E+04 5.3E+04 35.0d 1.1E+08 2.8E+06 64.0d 4.8E+07 1.3E+06 213995.36y 6.2E+03 6.2E+03	Half-lifeHultiple of LL value $T_c = 1m$ $T_c = 1y$ $T_c = 10y$ 12.33y3.0E+052.9E+051.7E+052.60y7.5E+055.9E+055.3E+0460.00y6.3E+046.2E+045.6E+0483.8d2.2E+071.4E+062.1E-06312.1d1.4E+076.5E+064.4E+035.27y2.2E+062.0E+066.1E+05244.2d2.9E+071.1E+071.0E+0386.2d3.0E+072.0E+066.8E-0664.8d4.1E+071.1E+066.4E-10106.6d6.9E+082.3E+082.1E-0183.0d8.0E+074.9E+066.0E-0628.79y1.0E+041.0E+048.1E+03680.00y6.0E+036.2E+036.1E+053999.92y1.6E+041.6E+041.6E+041988.57y5.3E+045.3E+045.3E+0435.0d1.1E+082.8E+061.0E-0964.0d4.8E+071.3E+064.6E-10213995.36y6.2E+036.2E+036.2E+031.1E+092.6E+081.2E+06

Water activation – CDS

- Activation of water from cooling circuits was estimated
- Shielding estimate around demineralization cartridges was performed assuming Be-7 to be stopped, but no target debris
 - \rightarrow 50 cm cylindrical concrete shielding was foreseen and for the roof of the area 165 cm concrete
- Remaining water in circuit mostly contains H-3 with a concentration of around 0.5 GBq/l per year of operation
- Due to the high H-3 production in the target (~18 TBq during 5 yrs operation), a significant contribution to the H-3 concentration in the water can come from H-3 out-diffusion from the target disks and subsequent trapping in the cooling water
- In case of 1% of out-diffusion every 2 months (best guess, no data available) and 100% trapping, the H-3 concentration from outdiffusion amounts to ~60 MBq/I every 2 months
- The exchange of cooling water (1 m³) in one year would result in ~220 GBq of H-3 activity

PoT 1×10¹⁹ (1 yr)

Total Activity (Bq) for H-3 and Be-7

Radioisotope	Target	Proximity shielding	Magnetic coil
Be-7	1.3×10^{12}	$2.6 imes 10^9$	$6.2 imes 10^6$
H-3	7.4×10^{10}	$1.8 imes 10^8$	$4.1 imes 10^5$

Results above do not take out-diffusion from target into account

Alternative cladding materials

Material:		Niobium (ASTM R04210	Nb-1Zr (ASTM R04261	Nb-10Hf-1Ti "C103"
Matorial.		Type 2)		(ASTM R04295)
Density (g/cm3):	:	8.6	8.6	8.86
Composition:	С	0.01	0.01	0.015
Max Weight %	Ν	0.01	0.01	0.01
0	0	0.025	0.025	0.025
	Н	0.0015	0.0015	0.0015
	Zr	0.02	0.8-12	0.7
	Та	0.3	0.5	0.5
	Fe	0.01	0.01	
	Si	0.005	0.005	
	W	0.05	0.05	0.5
	Ni	0.005	0.005	by difference
	Мо	0.02	0.05	-
	Hf	0.02	0.02	9-11"
	Ti	0.03	0.03	0.7-1.3"
Reference:		[1]	[2]	[3]
[1]	<u>-</u> https://www.r	navstarsteel.com/niobiu	um-sheet.html	
[2]	https://www.t	tantalum-niobium.com/	niobium/nb-1zr-wire-rod.	html
[3]	Ximenes Fra	inqueira R., Internal coi	mmunication. (2021)	

Radionuclide inventory of large W target

Tungsten part

Total PoT 2×10²⁰ (5 yrs) + 1 month cool-down

Tungsten – Total Activity (Bq)

Radionuclide	Half-life	Activity [Bq]
		$T_c = Im$
H-3	12.33y	2.0E+13
Pm-145	17.70y	1.9E+11
Gd-148	74.60y	8.6E+10
Tb-157	99.00y	8.1E+10
Lu-172	6.7d	1.5E+13
Hf-172	1.87y	1.5E+13
Lu-173	1.34y	2.1E+13
Hf-175	70.0d	5.8E+13
Ta-178	9.3min	9.7E+13
W-178	21.6d	9.7E+13
Ta-179	1.61y	9.4E+13
W-181	121.0d	3.8E+14
Ta-182	114.7d	2.2E+13
W-185	75.1d	2.8E+15
Sum of all		3.7E+15

Tungsten – Multiple of LL

Radionuclide	Half-life	Multiple of LL value
		$T_c = 1 \mathrm{m}$
H-3	12.33y	6.3E+04
Co-60	5.27y	9.3E+04
Ba-133	10.54y	5.6E+05
Pm-145	17.70y	6.0E+03
Eu-146	4.6d	1.2E+06
Gd-148	74.60y	2.7E+04
Eu-150	36.36y	2.2E+03
Lu-172	6.7d	4.8E+06
Hf-172	1.87y	4.7E+05
Lu-173	1.34y	6.6E+06
Lu-174	3.56y	9.4E+04
Hf-175	70.0d	1.8E+07
Ta-178	9.3min	3.1E+06
W-178	21.6d	3.1E+06
Ta-179	1.61y	2.9E+06
W-181	121.0d	1.2E+07
Ta-182	114.7d	6.9E+07
Re-184m	168.0d	2.1E+06
Sum of all		1.3E+08

Tungsten – Multiple of LA

Radionuclide	Half-life	Multiple of LA value $T_c = 1m$
Gd-148	74.60y	4.3E+08
Yb-169	32.0d	9.5E+06
Hf-172	1.87y	1.5E+08
Hf-175	70.0d	9.7E+06
Ta-182	114.7d	3.1E+07
W-185	75.1d	1.4E+08
Sum of all		8.2E+08

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red Main contributors (>1%), sum for all radionuclides

Large W target – LA for short cool-down

4.3E+08 1.9E+08 3.2E+08

1.5E+08 3.8E+07

1.7E+07 1.7E+07 <u>1.3E+07</u> **1.13E+09**

Tungsten part

Total PoT 2×10²⁰ (5 yrs)

Tungsten – Multiple of LA

1 hour

1	day
---	-----

Radionuclide	Halflife	1h		Radionuclide	Halflife	1d
Hf-178m		4s	1.2E+09	Gd-148		74.60y
Gd-148		74.60y	4.3E+08	W-185		75.1d
W-187		23.9h	3.2E+08	W-187		23.9h
W-185		75.1d	1.9E+08	Hf-172		1.87y
Hf-172		1.87y	1.5E+08	Ta-182		114.7d
Ta-182		114.7d	3.8E+07	Yb-169		32.0d
Sum of all			2.52E+09	Ta-183		5.1d
				Hf-175		70.0d
				Sum of all		

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red Main contributors (>1%), sum for all radionuclides

For 1 h of cool-down, Hf-178m is dominant (48%) and wrt. to 1 month of cool-down also W-187 and W185 are relevant (Hf-178m comes from the decay of Ta-178m (2.36h half-life)

- > For 4 hours of cool-down, the important radionuclides are as for 1 hour
- For 1 day of cool-down, Gd-148 becomes most important (38%)

Prompt radiation for large W target

4×10¹³ p / 7.2 s **Cross-sectional cut at the target**

Along z – Large W target vs. CDS target

- The highest dose rate are observed in the upstream part of the large W target with a sharp decrease towards its downstream end, which will lead to a significantly higher activation in the upstream than the downstream part of the target
- The max. dose rate reached in the large W target is with ~3.2e13 uSv/h about a factor 2.6 higher than what is reached at maximum in the CDS target

Some additional studies

Beam transfer

- Several RP studies for the high intensity SPS-ECN3 beam transfer were performed
- This includes studies for a bridge above the TDC85 transfer tunnel near ECN3

Prompt H*(10)

HI CN3

TT7 shielding recovery

 Shielding recovery from discontinued CERN PS Neutrino Facility (PSNF)

~100 m³ std. cast iron blocks ~50 m³ non-std cast iron blocks $> \sim 3$ MCHF, investment <1/3

Residual H*(10)

Radioactive waste zoning

TCC8 dismantling

- Dismantling of the highly radioactive TCC8 target area in 2026
- Evaluation of residual dose rates and radionuclide inventories for operational RP as well as radioactive transport and waste studies

Residual H*(10)

Various beamline and shielding configurations were investigated

Environmental impact

PoT 4×10¹⁹ per year

Dose from air releases

• Used max. dose coefficients from different age groups [6]

Effective dose estimates

Air	Total A [Bq]	Effective Dose [μ Sv/y]
CASE 1	3.69×10^6	1×10^{-5}
CASE 2	1.19×10^{11}	$3 imes 10^{-3}$

H-3 release due to air activation of ~80 kBq

- Worst-case immediate air release (CASE 2) yields 3 nSv/year (main contributors: N-13, Ar-41, C-11, O-15) and is thus well below the annual dose objective of CERN
- Exposure of members of the public due to air releases is negligible

Dose from stray radiation

Annual effective dose from muons

Annual limit of Non-designated Area on CERN domain and at CERN fence (1 mSv/y) as well as dose objective for members of the public (10 uSv/y) is by far met