
Bash and Git
LHCb Starterkit 2024
Lecturers:
Dr. Uzziel Perez and Dr. Mindaugas Sarpis

What is Bash?
Bash = Bourne Again shell

Bash is a shell program
designed to listen to commands

zsh, csh are other shell programs

On Windows install Windows
Subsystem for Linux (WSL)

wsl --install

On macOS/Linux open terminal
and you have a bash shell.

Why bother???
Learning bash is a powerful way to automate tasks on linux and boosts productivity. It will also help you finish

your PhD faster XD ...

 /\ \

 { `---' }
 { O O }
 ~~> V <~~

 \ \|/ /
 `-----'____

 / \ _
 { }\)__ _

 | _/ |/ / __/)
 __/ /(_/ __/

 (__/

Checking the manual

First command to learn:

This shows the documentation on Bash including all
the options that can be used with this command.

SSH: Connecting to a remote
computer

SSH or Secure Shell is a protocol used to securely
connect to a remote computer or server over an
unsecured network.

Let’s get our hands dirty… Open the terminal and let’s
get right on to it!

man bash

man ssh

NAME

 bash - GNU Bourne-Again SHell

SYNOPSIS

 bash [options] [command_string | file]

COPYRIGHT

 Bash is Copyright (C) 1989-2020 by the Free Software F

DESCRIPTION

 Bash is an sh-compatible command language interpreter
 ful features from the Korn and C shells (ksh and csh)

OPTIONS

 All of the single-character shell options documen
 shell is invoked. In addition, bash interprets the fo

 -c If the -c option is present, then commands a
 command_string, the first argument is assig
 to $0 sets the name of the shell, which is u
 -i If the -i option is present, the shell is in

SSH: Connecting to a remote computer

SSH or Secure Shell is a protocol used to securely connect to a remote computer or server over an
unsecured network.

Let’s check if you could ssh into lxplus.

While it’s not necessary that we work on lxplus this morning, better do the prerequisites for the other lessons
throughout the week.

man ssh

ssh -X USERNAME@lxplus.cern.ch

https://lhcb.github.io/starterkit-lessons/first-analysis-steps/prerequisites.html

What is Lxplus?
Lxplus is CERN’s interactive Linux
service for all users.

Provided by the IT Department.

How to activate AFS workspaces:
1. Go to the CERN Resources Portal.
2. Navigate to List Services → AFS

Workspaces → Settings.

https://resources.web.cern.ch/resources/

SSH to LXPLUS

The -X flag enables basic X11 forwarding (running
GUI).

Accessing the Grid
To access the grid, we need to initialize a valid Grid
Proxy Certificate which is essential for accessing
various LHCb and CERN computing resources (data
storages, job submission and file transfer).

This command is a wrapper around the standard
voms-proxy-init . You should see a similar output

as on the right.

ssh -X username@lxplus.cern.ch

lhcb-proxy-init

ciperez:~$ lhcb-proxy-init
Generating proxy...

Enter Certificate password: **********

Added VOMS attribute /lhcb/Role=user

Uploading proxy..

Proxy generated:

subject : /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=c

issuer : /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=c

identity : /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=c

timeleft : 23:53:59

DIRAC group : lhcb_user

path : /tmp/x509up_u81686

username : ciperez

properties : NormalUser, PrivateLimitedDelegation

VOMS : True

VOMS fqan : ['/lhcb/Role=user']

Proxies uploaded:

 DN
 /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=ciperez/CN=7734

Download Tutorial Pack

or for this tutorial see:

For additional materials see:

wget -O data-shell.zip https://cern.ch/go/9rKZ && unzip data-shell.zip && rm data-shell.zip

/afs/cern.ch/user/c/ciperez/public/data-shell

/afs/cern.ch/user/c/ciperez/public/bash_practice

 / \
 e⁻ →→→ | ＊ | ←←← e⁺
 →→→→→→→→→→→→→| ╱╲╱╲ |←←←←←←←←←←←←←
 B →→| ╱ ╳ ╲ |←← B
 →→→→→→→→→→→→→| ╲╱╲╱ |←←←←←←←←←←←←←
 e⁻ →→→ | ＊ | ←←← e⁺
 ___________/

File System navigation

Command	Description
pwd	Lists the path to the working directory
ls	List directory contents
ls -a	List contents including hidden files (Files that begin with a dot)
ls -l	List contents with more info including permissions (long listing)
ls -r	List contents reverse order
cd	Change directory to home
cd [dirname]	Change directory to specific directory
cd ~	Change to home directory
cd ..	Change to parent directory
cd -	Change to previous directory (which could be different than the parent of course
find [dirtosearch] -name [filename]	Find location of a program

One can also group flags together like ls -la . Credits to bradtraversy for this slide.

Commands to navigate the file system. If you are using lxplus , you are most-likely using the AFS or the
Andrew File System which is a distributed file system where multiple computers are allowed to share files
and data efficiently.

https://gist.github.com/bradtraversy/cc180de0edee05075a6139e42d5f28ce

Modifying files and directories

Command	Description	Examples
mkdir [dirname]	Make directory	mkdir starterkit24
touch [filename]	Create file	touch scratch.py
rm [filename]	Remove file	rm scratch.py
rm -i [filename]	Remove directory, but ask before	rm -i scratch.py
rm -r [dirname]	Remove directory	rm -r startkerkit24
rm -rf [dirname]	Remove directory with contents
rm ./*	Remove everything in the current folder	
cp [filename] [dirname]	Copy file	
mv [filename] [dirname]	Move file	
mv [dirname] [dirname]	Move directory	
mv [filename] [filename]	Rename file or folder	
mv [filename] [filename] -v	Rename Verbose - print source/destination directory	

Credits to bradtraversy for this slide..

Below are a list of commands to modify files and directories.

https://gist.github.com/bradtraversy/cc180de0edee05075a6139e42d5f28ce

Some extra tips!
We can also do multiple commands at once with

the && operator.

History

Keyboard shortcuts are cool

- ### Keyboard Commands

- clear: Will clear the screen

- Ctrl + C: Will cancel a command

- Ctrl + R: Will search for a command

- Ctrl + D: Will exit the terminal

- ### Cursor

- Ctrl + A: Go to the beginning of the command line

- Ctrl + E: Go to the end of the command line

- Ctrl + B: Move back one character

- Ctrl + F: Move forward one character

- alt + right: Move cursor forward one word

- alt + left: Move cursor back one word

mkdir starterkit && cd startkerkit

history : to print out entire history

Ctrl + r: search command history

!n : prints out the nth command in the history

Keyboard shortcuts

- Up Arrow: Will show your last command

- Down Arrow: Will show your next command

- Tab: Will auto-complete your command

Listening Break

We also want to set the following environment variables:

For persistence, you can also set environment varialbes in your ~/.bashrc file.

Try out the commands you learned in the exercises from Analysis Essentials: Working with Files and
Directories.

export bash_data=/Users/uzzielperez/data-shell # or your path to data-shell

echo $bash_data

Similaryly

export bash_practice=/Users/uzzielperez/Desktop/bash_practice # or your full path

https://hsf-training.github.io/analysis-essentials/shell/03-create.html
https://hsf-training.github.io/analysis-essentials/shell/03-create.html

Display and Redirection
To display messages
echo "Hello, My name's Forrest."

To create a file with Echo
echo "Hello, My name's Forrest." > helloworld.txt

To append to a file
echo "Forrest Gump." >> helloworld.txt

To display the content of the file
cat helloworld

In general the right angle bracket tells the system to
output results into a target.

To save the cat into a file:

Here’s a dog:

echo " /___/\ "

echo " (o o)"

echo " (=^=)"

echo " --m-m-- "

echo -e " /___/\\\n(o o)\n(=^=)\n (--m-m--)" > cat

echo -e " ___________________
< Hello, nice to meet you! >

 \\ ^__^
 \\ (oo)_______
 (__)\\)\\/\\
 ||----w |
 || ||"

Redirection, Pipes and
Filters

A vertical bar between the two commands = pipe.

Highlighting a few things from the tutorial.

cd data-shell && cd molecules

wc *.pdb # counts lines, words, chars in files

wc -l *.pdb # outputs only the number of lines

wc -l *.pdb > lengths.txt # redirects output to a file
cat lengths.txt # concatenate - prints file content

sort -n lengths.txt # sorts out the result

head -n 1 lengths.txt # prints out the first line

tail -n 3 lengths.txt # prints out the last 3 lines

Command1 Command2

 _______ _______
	pipe		
wc-l	-------	----→	sort
_______			_______
 data
 flow

Output of wc -l ───→ Input for sort
e.g.

wc -l *.pdb | sort -n
wc -l *.pdb | sort -n | head -n 1

https://hsf-training.github.io/analysis-essentials/shell/04-pipefilter.html

More commands

Command	Description	Examples
grep [pattern][file]	Looks for a pattern in file	grep "exhaust-port" rebel_intel.txt
find [directory] -n[name]	Finds a file in directory	find . -n rebel_intel.txt

grep is short for global regular expression print. It is a useful command to search for matching patterns

in a file.

find is for finding file/s in directories

Below are a list of commands to modify files and directories.

Regular Expressions with grep

Let’s try some Regex:

cd $bash_practice

grep --color='auto' "unix" geekfile.txt # ^ start of the line

grep --color='auto' "^unix" geekfile.txt # ^ start of the line

grep --color='auto' "unix$" geekfile.txt # $ end of the line

grep --color='auto' 'os\.' geekfile.txt # match `os`` before a period

grep --color='auto' 'os[.[:space:]]*$' geekfile.txt # match `os` regardless of punctutation

For a full cheatsheet see this and this tutorial.

Highlighting some parts of the Analysis Essentials:

cd $bash_data # an environment var we set earlier to the /path/to/data-shell

cd writing

cat haiku.txt

grep the haiku.txt # find the pattern "the" in haiku.txt

grep -i the haiku.txt # find the pattern "the" (case-insensitive) in haiku.txt

grep -w The haiku.txt # find the word "The" in haiku.txt

grep --color='auto' 'the' haiku.txt

https://ryanstutorials.net/linuxtutorial/cheatsheetgrep.php
https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://hsf-training.github.io/analysis-essentials/shell/07-find.html

More commands

Command	Description	Examples	
-----------------------------------	--------------------------------------	-------------------------------------	
sed "s/[find]/[replace]/g" [file]	Find and replace a pattern in a text	sed "s/Luke/Leia/g" rebel_intel.txt	
ln -s [filename] [symlinkname]	Create a symlink	ln -s [rebel_intel.txt][rebel.txt]	

sed stands for stream editor and it can be used to edit text files. It is commonly used to replace occurences of

words in a file.

Creating a symlink is neat way to create shortcut to the original file without having to copy the file.

Below are a list of commands to modify files and directories.

Other Comands

Important commands like du (disk usage) and df (remaining free space) are also found in the Analysis
Essentials.

| Command | Description | / __
-----------	---	/ []	
ps	a.k.a. process status displays all processes		
ps aux	display all processes in the system, of aux flags.		______
chmod	change file modes		______
chmod u+x	give yourself (owner only) permission to execute a file you own	/	____
chmod +x	Adds permission to execute a file = `chmod a+x`	/ ____	
chown	change file onwer or group		\ /
top	display sorted information about processes		\ / \

| kill <pid> | terminate or kill a signal process | | _/ | []
| kill -9 | non-ignorable kill! | | |
| lsof +D | list open files. Useful when prematurely killing a process | \ /
| tar | manipulate tape archives | \ /
| zip | package and compresss archive files | \ ___ |
 | | \|
 |/ |
 |_ |_
 [_] [_]

https://hsf-training.github.io/analysis-essentials/shell-extras/shell2.html#disk-space
https://hsf-training.github.io/analysis-essentials/shell-extras/shell2.html#disk-space

Cat and sed Exercise

You find that the Belle experiment was mistakenly
written instead of LHCb!

You can use the sed command to replace ALL the
instances of Belle within the txt.

If you only want to replace the nth occurence of a
pattern in a line:

Store this cat into a txt file.

This will print out

cat LHCb.txt

sed 's/Belle/LHCb/g' LHCb.txt

$sed 's/unix/linux/2' geekfile.txt # here n = 2, you can als

cat cat.txt

 /_/\
(o o)
 > ^ <

Use sed to replace open eyes (o) with closed eyes (X)

sed "s/o/X/g" $cat_file > sleeping_cat.txt
echo "Cat with eyes closed has been written to sleeping_cat

cat sleeping_cat.txt

 /_/\
(X X)
 > ^ <

Loops,
Conditionals,

Arrays and shell
scripts

Listening Break

Here are some highlights:

Try out the Loops exercises from the Analysis Essentials: Working with Files and Directories.

$ cd /Users/uzzielperez/data-shell/creatures
$ for filename in basilisk.dat unicorn.dat
do

 head -n 3 $filename
 # Or do some other thing here like echo the filename

done

https://hsf-training.github.io/analysis-essentials/shell/03-create.html

Why Shell Scripting?

In general, it also helps with tedious and repetitive tasks.

One can string together various pieces of their analysis and save time…

export analysis_dir=$HOME/work/analysis

alias mainscript="python3 main.py"

lhcb-proxy-init

source setupLCG.sh

function run_analysis(){
 python3 do_Fit.py
 python3 calc_eff.py
 python3 main_analysis.py
 python3 plot_results.py
}

Bash Scripting Crash
Course

To run the script:

One could also do:

User input

- Arguments

$1, $2.. store the arguments passed to the script…

So if you do ./script.sh condition1 condition2 ,
what happens? It just echos the strings passed on to
the script.

Open a file like vi starwars.sh and put these lines:

#!/bin/bash

name ="Luke Skywalker"

echo "Hello, $name"

bash starwars.sh

chmod u+x starwars.sh

./starwars.sh

read -p "Would you like to look at MC or DATA: " datatype

echo "Hello $datatype"

read -p "Enter data-taking year: " year

echo "You are analyzing $datatype $year "

echo $0

echo $1

echo $2

echo "${@}" # Access all the arguments [More on this later]

Bash Scripting Crash
Course

[[]] enables to use operators.

Comparisons: =, !=, >, <, ≤, ≥

Inspired by the Missing Shell Scripting Crash Course

Test commands for some
complex operations

if [["$name" == "dorothy"]]
then

 echo "hi dorothy we missed you"

else

 echo "welcome $name"

fi

Compare Strings

[["$str1" == "$str2"]]
[["$str1" != "$str2"]]

Integer Comparisions

[["$int1" -eq "$int2"]] # $int1 == $int2
[["$int1" -ne "$int2"]] # $int1 != $int2
[["$int1" -gt "$int2"]] # $int1 > $int2
[["$int1" -lt "$int2"]] # $int1 < $int2
[["$int1" -ge "$int2"]] # $int1 >= $int2
[["$int1" -le "$int2"]] # $int1 <= $int2

And or

[[...]] && [[...]] # And
[[...]] || [[...]] # Or

https://dev.to/godcrampy/the-missing-shell-scripting-crash-course-37mk

Minimal Safe Bash Script Template

FAIL FAST

Suppose the backups directory does not exist. If there is no safety option `set -Eeuo pipefail`, bash jumps
into the next command and deletes the important file before you can react. This line configures the shell to
exit immediately on any error...

Get the Location

Often we find the scripts we need to run in some other directory e.g. /some/long/path/to/script.sh .
This can be fixed by going to the directory before execution with cd /some/long/path/to/ &&
./script.sh

A tutorial I wish I had when I was younger is from Bash Script Template

#!/usr/bin/env bash

cp important_file ./backups/

rm important_file

script_dir=$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd -P)

https://betterdev.blog/minimal-safe-bash-script-template/

Bash Profile and
persistency settings

The ~/.bashrc file provides a place where you can
set up variables, functions and aliases and helps
reduce redundant effort.

Ref: Some useful things to add to `~/.bashrc

The ~/.bash_profile is used for defining user
settings for a login shell.

Load .bashrc if it exists

test -f ~/.bashrc && source ~/.bashrc

if [-f ~/.bashrc]; then
 . ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH

echo "$(date + [%F_%H:%M]) at $(hostname)" >> .lxnodes # use
export PATH=$HOME/.cargo/bin:$PATH"

Enable text color and formatting

export PS1="\[\033[36m\]\u:\[\033[33m\]\w\[\033[m\]\$ "

export CLICOLOR=true

This is where you put your hand rolled scripts (remember t

PATH="$HOME/bin:$PATH"

alias ll ='ls -l -h'

alias la='ls -a -l -h'

function mcd (){
 mkdir $1; cd $1
}

alias eosuser='cd /eos/user/c/ciperez'

alias afsdir='cd /afs/cern.ch/work/c/ciperez

https://serverfault.com/questions/3743/what-useful-things-can-one-add-to-ones-bashrc

Miscellaneous
TMUX, Screen

Lets you split session into windows and also lets you log out and having the session running. For big
workloads, better to use HTCondor. Helps with monitoring CPU/memory usage too.

See a Quick and Easy Guide to TMUX and How to Use Linux Screen.

LCG Stacks and Apptainer
If you want an environment where everything works harmoniously, you might want to create a conda
environment, or a python environment.

It is however better to rely on the already installed software to work with the platform you currently have.

For ML related stuff, one can also get gpu-supported programs such as tensorflow with LCG_106cuda
for lxplus-gpu . To check the latest LCG releases click here.

source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh <LCG_number> <platform>

https://hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://linuxize.com/post/how-to-use-linux-screen/
https://lcginfo.cern.ch/

THE END!
This is just a simulation.

Backup

Bash Scripting Crash
Course

Variable
Assigning value to a variable needs $, otherwise
bash will treat name as a string literal and it will output
Hello name instead.

To run,

User input

- ## Arguments

$1, $2.. store the arguments passed to the script…

So if you do ./script.sh condition1 condition2 ,
what happens? It just echos the strings passed on to
the script.

Inspired by the Missing Shell Scripting Crash Course

#!/bin/bash

name ="Luke Skywalker"

echo "Hello, $name"

$user chmod
$user ./script.sh

read -p "What is you name: " name

echo "Hello $name"

read -p "Enter an action: " verb

echo "You are ${verb}ing"

echo $0

echo $1

echo $2

echo "${@}" # Access all the arguments [More on this later]

https://dev.to/godcrampy/the-missing-shell-scripting-crash-course-37mk

Bash Scripting Crash
Course

Logical Comparisons
[[]] enables to use operators.

Comparisons: =, !=, >, <, ≤, ≥
Leave some space on both ends of brackets… :)

Test commands for some
complex operations

Inspired by the Missing Shell Scripting Crash Course

if [["$name" == "adam driver"]]
then

 echo "hi adam we missed you"

else

 echo "welcome $name"

fi

[[-e "$file"]] # True if file exists
[[-d "$file"]] # True if file exists and is a directory
[[-f "$file"]] # True if file exists and is a regular file
[[-z "$str"]] # True if string is of length zero
[[-n "$str"]] # True is string is not of length zero

Compare Strings

[["$str1" == "$str2"]]
[["$str1" != "$str2"]]

Integer Comparisions

[["$int1" -eq "$int2"]] # $int1 == $int2
[["$int1" -ne "$int2"]] # $int1 != $int2
[["$int1" -gt "$int2"]] # $int1 > $int2
[["$int1" -lt "$int2"]] # $int1 < $int2
[["$int1" -ge "$int2"]] # $int1 >= $int2
[["$int1" -le "$int2"]] # $int1 <= $int2

And or

[[...]] && [[...]] # And
[[...]] || [[...]] # Or

https://dev.to/godcrampy/the-missing-shell-scripting-crash-course-37mk

Bash Scripting Crash
Course

Arrays and Functions

To read:

To insert:

To delete:

Deleting needs re-indexing

- ## Functions

Inspired by the Missing Shell Scripting Crash Course

arr=(a b c d)

echo "${arr[1]}" # Single element

echo "${arr[-1]}" # Last element

echo "${arr[@]:1}" # Elements from 1
echo "${arr[@]:1:3}" # Elements from 1 to 3

arr[5]=e # direct address and ins

arr=(${arr[@]:0:1} new ${arr[@]:1}) # Adding 'new' to array

arr=(a b c d)

unset arr[1]

arr=("${arr[@]}")
echo << "${arr[1]}" # c

greet() {

 echo "Hello, $1"

}

greet Bash # Hello, Bash

https://dev.to/godcrampy/the-missing-shell-scripting-crash-course-37mk

Shell Scripts

Loops and if statements need a ";"

Variables Assigning value to a variable needs $

We can add some safety options at the top of the
script.Write a new script called my_script.sh with your

favorite editor.

j = 20

for i in {0..10};
 do

 echo $i

 ((j+= 1))
 done

if [-f $HOME/.bashrc];
 then

 echo Have .bashrc

fi

a = $((j+2))
echo $a, $j

#!/usr/bin/env bash

my_script.sh

Safety options

-u :Undefined variables are treated as errors

script will stop when encountered

-e: if any commands in the script fail

the script immediately fails

-o: pipefail prevents the script from running in pipes

set -eux -o pipefail

shopt -s expand_aliases

j = 20

for i in {0..10};
 do

 echo $i

 ((j+= 1))
 done

....

Shell Scripts

Loops and if statements need a ";"

Variables Assigning value to a variable needs $

We can add some safety options at the top of the
script.Write a new script called my_script.sh with your

favorite editor.

j = 20

for i in {0..10};
 do

 echo $i

 ((j+= 1))
 done

if [-f $HOME/.bashrc];
 then

 echo Have .bashrc

fi

a = $((j+2))
echo $a, $j

#!/usr/bin/env bash

my_script.sh

Safety options

-u :Undefined variables are treated as errors

script will stop when encountered

-e: if any commands in the script fail

the script immediately fails

-o: pipefail prevents the script from running in pipes

set -eux -o pipefail

shopt -s expand_aliases

j = 20

for i in {0..10};
 do

 echo $i

 ((j+= 1))
 done

....

