Dr. Mindaugas Sarpis
LHCb Starterklt 2024

n Control using'Git

The Importance of
Version Control

= Even if working alone, many
different version of the same file
will exist.

= Some overwritten changes
might be needed later.

= A "versioned" file might be
needed when implementing
comments from supervisor /
reviewers.

= This hold true for written work,
code and other files.

“FINAL doc

CEmAL.doc!

.doc

1 ol
FINAL _rev.6.COMMENTS. doc FINAL _rev.8.commentsS.

JORGE CHAM © 2012

CORRECTIONS.doc

) 7
FINAL _rev.18.commente?. EINAL _rev.22.commentsHa.
corrections?.MORE.30.doC ¢ orrections.10. H£@%%WHYWHY

WWW.PHDPCOMICS. COM

Tracking Changes (differences)

= Rather than saving multiple copies of the same file, we can track changes.

= Word processors and other software have some change-tracking functionality
but it is limited (no synchronous editing, no change history, etc.).

= git isan open-source version control system that is used to track changes in
files.

Different Versions

= An eddit to a file might
overwrite some of the content in
the previous version.

= This divergences may arrise
while working alone, but they
are really common when
multiple people are working on
the same file.

Merging

= git has great functionality for
merging different versions of
the same file.

= If the previous content is not
overwritten, or deleted, merge
just combines the changes into
one file.

= If changes over-write each other
a so-called merge conflict
arises.

USing git for the fi rst usage: git config [<options>]
time Config file location

--global use global config file
--system use system config file
= The user name and email address = lLacl U5E TEpESITy iy ol
--worktree use per-worktree config file
need to configured. _f, —file < file > use given config file
--blob < blob-id > read config from given blob obj
git config --global user.name "Mindaugas Sarpis
git config --global user.email "mindaugas.sarpisacern.ch Action
--get get value: name [value-pattern]
n CheCk the Conﬁgura‘tion W|‘th —-get-all get all values: key [value-patter
-—get-regexp get values for regexp: name-regex
git config --list --get-urlmatch get value specific for the URL: s
--replace-all replace all matching variables: n
- Edrt the Conﬁguration W|th --add add a new variable: name value
--unset remove a variable: name [value-pa
git config --global --edit --unset-all remove all matches: name [value-p
--rename-section rename section: old-name new-name
- Open Configuration help: --remove-section remove a section: name
-1, --list list all
git config —-h --fixed-value use string equality when comparin
-e, -—edit open an editor

git config --help

-—get-color find the color confioured: <slot [

Creating a new repository e

= Arepository is initialized with the

fO”OW'hg Command: gitadd @ git commit -

git init staging area

= This command creates a new _ . . ,
repository in the current directory. © The repository is .empty at this point
= The repository is a hidden directory and the output will be:

called .git that contains all the On branch main
information changes tracked by git . wo comits yet
" YOU can CheCk the status Of the nothing to commit (create/copy files and use "git add" to t

repository with:

git status

Staging Area

it =

= git hasastaging area where files -
are placed to track the changes o @ o -

made to them. staging area —
= To move a file to the staging area

use: = When staged files are present, the

git add <file> outputcﬁ git status will be:

= To move all files to the staging area on branch main

Your branch is up to date with 'origin/main’.

use:

Changes to be committed:
use "git restore --staged <file>..." to unstage

= To unstage a file use: modified: < file >

git add --all

git restore --staged <file>

= Changes to files can be viewed with:

git diff

Committing Changes

= Files are committed to the repository
from the staging area with:
git commit -m "A message describing the changes

= Commitis a snapshot of the
repository at a given time.

= Only changes to files are tracked, not
the directories themselves.

= It's best to keep the commits small
and focused on a single change.

= The commit message should be
descriptive and concise.

= The commit message should be in
the present tense.

FILE1 .txt

FILE2.txt

.git

git add FILE1 .txt

git add FILE2 .txt

@ git commit

staging area

repository

Restoring Changes

.git

= Changes to files can be restored to —
the last commit with: | —

S @ e [—

» Changes to files can be restored to 0 —
the last commit and the staging area -
with: o

git restore --staged < file >

« Changes to files from previous = A new commit reverting the changes
commits can be restored using the can be made with:
hash of the commit: git revert < hash >

git restore —source=chash> < file > = The entire repository can be restored
to the last commit with deleting the
changes:

git reset --hard < hash >

HEAD

HEAD~1

HEAD~2

branch

3a54f76

~_

59¢230a

~_

892134f

~_

a2129cb

~_

staging area

,
o
(=3
=
5
-
o

git add file2.txt

Ilgnoring Files and
Directories

= There might be files that you don't
want to track with git .
= Temporary files
» Qutput files
» Files with sensitive information
= Large files

= These files can be ignored by
creatinga .gitignore file in the
repository.

__pycache__/
*.pylcod
*$py.class

.Python
build/
develop-eggs/
dist/
downloads/
eggs/

.eggs/

lib/

1ib64/

parts/

Git Remotes

~/alflin/recipes

= One of the most powerful
features of git isthe ability to
work with remote repositories.

= Remote repositories are copies
of the repository that are stored
on a server.

https://github.com/alflin/recipes.git

= Using one of the remote
providers (GitHub, GitLab,
Bitbucket, etc.) you can store
your repository in the cloud.

= This enables collaboration with
other people and provides a

backup of your work.

Git Remotes

= The remote is created via the
remote provider (GitHub,

GitLab, Bitbucket, etc.).

= Aremote URL needs to be
added to the local repository
with:

git remote add origin gita@github.com:mygithub/myremc

= To check which remotes are

added:

git remote -v

~/alflin/recipes

https://github.com/alflin/recipes.git

Push / Pull Operations

= Changes to the local repository
can be pushed to the remote
repository with:

git push origin main

= Changes to the remote
repository can be pulled to the
local repository with:

git pull

~/alflin/recipes

https://github.com/alflin/recipes.git

Cloning Repositories

= A repository can be cloned from
a remote repository with:

git clone < URL >

~/alflin/recipes

https://github.com/alflin/recipes.git

~ljimmy/recipes

Branches

= git has a powerful branching system that allows for multiple versions of the
repository to be worked on simultaneously.

= The default branch is called main.

= A new branch can be created with:

git branch < branch-name >

= The branch can be switched with:

git checkout < branch-name >

