
Dr. Mindaugas Šarpis
LHCb Starterkit 2024
Version Control using Git

The Importance of
Version Control

Even if working alone, many
different version of the same file
will exist.
Some overwritten changes
might be needed later.
A "versioned" file might be
needed when implementing
comments from supervisor /
reviewers.
This hold true for written work,
code and other files.

Tracking Changes (differences)
Rather than saving multiple copies of the same file, we can track changes.
Word processors and other software have some change-tracking functionality
but it is limited (no synchronous editing, no change history, etc.).
git is an open-source version control system that is used to track changes in
files.

Different Versions
An eddit to a file might
overwrite some of the content in
the previous version.
This divergences may arrise
while working alone, but they
are really common when
multiple people are working on
the same file.

Merging
git has great functionality for
merging different versions of
the same file.
If the previous content is not
overwritten, or deleted, merge
just combines the changes into
one file.
If changes over-write each other
a so-called merge conflict
arises.

Using git for the first
time

The user name and email address
need to configured.

Check the configuration with:

Edit the configuration with:

Open configuration help:

git config --global user.name "Mindaugas Sarpis"

git config --global user.email "mindaugas.sarpis@cern.ch"

git config --list

git config --global --edit

git config --h

git config --help

usage: git config [<options>]

Config file location

 --global use global config file

 --system use system config file

 --local use repository config file

 --worktree use per-worktree config file

 -f, --file < file > use given config file

 --blob < blob-id > read config from given blob obje

Action

 --get get value: name [value-pattern]

 --get-all get all values: key [value-patter

 --get-regexp get values for regexp: name-regex

 --get-urlmatch get value specific for the URL: se

 --replace-all replace all matching variables: na

 --add add a new variable: name value

 --unset remove a variable: name [value-pat

 --unset-all remove all matches: name [value-pa

 --rename-section rename section: old-name new-name

 --remove-section remove a section: name

 -l, --list list all

 --fixed-value use string equality when comparing

 -e, --edit open an editor

-get-color find the color configured: slot [d

Creating a new repository
A repository is initialized with the
following command:

This command creates a new
repository in the current directory.
The repository is a hidden directory
called .git that contains all the
information changes tracked by git .
You can check the status of the
repository with:

.git

git add git commit

staging area
repository

The repository is empty at this point
and the output will be:

git init

git status

On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to t

Staging Area
git has a staging area where files
are placed to track the changes
made to them.
To move a file to the staging area
use:
git add <file>

To move all files to the staging area
use:
git add --all

To unstage a file use:
git restore --staged <file>

Changes to files can be viewed with:
git diff

.git

git add git commit

staging area
repository

When staged files are present, the
output of git status will be:

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: < file >

Committing Changes
Files are committed to the repository
from the staging area with:
git commit -m "A message describing the changes"

Commit is a snapshot of the
repository at a given time.
Only changes to files are tracked, not
the directories themselves.
It’s best to keep the commits small
and focused on a single change.
The commit message should be
descriptive and concise.
The commit message should be in
the present tense.

.git

FILE1.txt

FILE2.txt

git commit

staging area

repository

git add FILE2.txt

git add FILE1.txt

Restoring Changes
Changes to files can be restored to
the last commit with:
git restore < file >

Changes to files can be restored to
the last commit and the staging area
with:
git restore --staged < file >

Changes to files from previous
commits can be restored using the
hash of the commit:
git restore --source=<hash> < file >

.git

FILE1.txt

FILE2.txt

HEAD

HEAD~1

HEAD~2
892134f

f22b25e

3a54f76

git restore -s HEAD~1 .
or

git restore -s f22b25e .

repository

A new commit reverting the changes
can be made with:
git revert < hash >

The entire repository can be restored
to the last commit with deleting the
changes:
git reset --hard < hash >

a2129cb

892134f

59e230a

3a54f 76

43f e423

branch
main

staging area

git add file2.txt

git add file1.txt

HEAD

HEAD~1

HEAD~2

git commit

git restore file1.txt

Ignoring Files and
Directories

There might be files that you don’t
want to track with git .

Temporary files
Output files
Files with sensitive information
Large files

These files can be ignored by
creating a .gitignore file in the
repository.

Byte-compiled / optimized / DLL files

__pycache__/

*.py[cod]

*$py.class

C extensions

*.so

Distribution / packaging

.Python

build/

develop-eggs/

dist/

downloads/

eggs/

.eggs/

lib/

lib64/

parts/

Git Remotes
One of the most powerful
features of git is the ability to
work with remote repositories.
Remote repositories are copies
of the repository that are stored
on a server.
Using one of the remote
providers (GitHub, GitLab,
Bitbucket, etc.) you can store
your repository in the cloud.
This enables collaboration with
other people and provides a
backup of your work.

.git

https://github.com/alflin/recipes.git

.git

~/alflin/recipes

git add git commit

staging area
repository

Git Remotes
The remote is created via the
remote provider (GitHub,
GitLab, Bitbucket, etc.).
A remote URL needs to be
added to the local repository
with:

To check which remotes are
added:

.git

https://github.com/alflin/recipes.git

.git

~/alflin/recipes

git add git commit

staging area
repository

git remote add origin git@github.com:mygithub/myremo

 git remote -v

Push / Pull Operations
Changes to the local repository
can be pushed to the remote
repository with:

Changes to the remote
repository can be pulled to the
local repository with:

.git
origin https://github.com/alflin/recipes.git

~/alflin/recipes

git add git commit

staging area
repository

.git

https://github.com/alflin/recipes.git

repository

git push origin

git push origin main

git pull

Cloning Repositories
A repository can be cloned from
a remote repository with:

.git
origin https://github.com/alflin/recipes.git

~/alflin/recipes

git add git commit

staging area
repository

.git

https://github.com/alflin/recipes.git

repository

git clone

.git
origin https://github.com/alflin/recipes.git

~/jimmy/recipes

git add git commit

staging area
repository

git clone < URL >

Branches
git has a powerful branching system that allows for multiple versions of the
repository to be worked on simultaneously.
The default branch is called main .
A new branch can be created with:

The branch can be switched with:
git branch < branch-name >

git checkout < branch-name >

