It can be shown that the matrix, M, of the transformation is orthogonal $M^T = M^{-1}$ 1173 $_{1174}$ and det $M = 1$, which defines a rotation in Euclidean space.

¹¹⁷⁵ B Dictionary of variables

¹¹⁷⁶ B.1 Vertex isolation

 $_{1177}$ We take the mother particle of the decay and add other tracks to its daughters 1 by 1, ¹¹⁷⁸ building a new vertex χ^2 (see Fig. [91\)](#page-0-0).

Figure 91: Schematic representation of the vertex isolation method.

- ¹¹⁷⁹ The following variables are built: ¹¹⁸⁰ • VTXISONUMVTX: number of other tracks in the event for which the new vertex 1181 fit $\chi^2 < 9$; \bullet VTXISODCHI2MASSONETRACK: smallest difference in χ^2 when adding 1 track; 1183 • VTXISODCHI2MASSTWOTRACK: smallest difference in χ^2 when adding 1 track ¹¹⁸⁴ to the combination that had the smallest $\Delta \chi^2$ when adding 1 track; ¹¹⁸⁵ • VTXISODCHI2MASSONETRACK: invariant mass of the tracks used to build the 1186 VTXISODCHI2MASSONETRACK variable:
- ¹¹⁸⁷ VTXISODCHI2MASSTWOTRACK: invariant mass of the tracks used to build the ¹¹⁸⁸ VTXISODCHI2TWOTRACK variable.

¹¹⁸⁹ B.2 Cone isolation

¹¹⁹⁰ An isolation cone is built around a head particle from tracks whose angular distance ¹¹⁹¹ from the head particle is, $R = \sqrt{\eta^2 + \phi^2} = 0.5, 1.0, 1.5, 2.0$, where ϕ is the azimuthal 1192 angle and η is the pseudorapidity. From the isolation cone all of the particle's daughters ¹¹⁹³ are excluded (see Fig. [92\)](#page-1-0) and isolation variables are built with the remaining particles. ¹¹⁹⁴ Charged-cone (CC) variables are concerned with the charged tracks within the isolation ¹¹⁹⁵ cone while neutral-cone (NC) variables are concerned with the neutral objects inside this ¹¹⁹⁶ cone.

¹¹⁹⁷ The following variables are used:

 \bullet DELTAETA, DELTAPHI: Δ η and Δ φ between the vector sum momentum of the isolation cone tracks and the head of the cone. For a cone size of 0.5, the DELTAETA variable peaks at 0 and at around 3. The peak around 3 is caused by cases in which the isolation cone is empty, for which DELTAETA is simply the eta of the head

Figure 92: Schematic representation of the isolation cone.

¹²¹⁴ B.3 Track isolation BDT

¹²¹⁵ Track isolation discriminates signal against partial reconstructed background by checking ¹²¹⁶ that the underlying tracks in each event are not coming from a selected candidate.

¹²¹⁷ Tracks in each event are divided into 3 categories which are schematically represented ¹²¹⁸ in Fig. [93:](#page-2-0)

¹²¹⁹ • Selected tracks: tracks coming from a selected candidate (red);

¹²²⁰ • Isolating tracks: any track that is not coming from a selected candidate (black);

¹²²¹ • Non-isolating tracks: tracks that are coming from the same vertex as the selected ¹²²² candidate (purple)

¹²²³ Track isolation is implemented with machine learning techniques: a BDT is trained ¹²²⁴ with geometric variables that help discriminating isolating from non-isolating tracks. The 1225 BDT is trained on the $B_s \to K \mu \nu$ decay with 5 input features:

1226
$$
\bullet \ \ FC = \frac{p_{Niso_track + \mu/K} \ \theta}{p_{Niso_track + \mu/K} \ \theta + p_{T,Niso_track + p_{T,\mu/K}}};
$$

Figure 93: Schematic representation of the track definition in the track isolation tool.

¹²⁴¹ • Bp₋TRKISOBDTTHIRDVALUE: BDT output when using background sample 3.

1242 B.4 Vertex isolation BDT

 A BDT is trained to evaluate how isolated the daughter tracks of a certain particle are from other tracks in the event. The BDT is trained on 3 different decays:

$$
1245 \qquad \bullet \ \Lambda_c^* \to \Lambda_c \pi^+ \pi^- (1);
$$

1246 $B^+ \to D^* \tau^+ (2);$

1247 $\bullet \Lambda_b \to p\mu$ (3);

¹²⁴⁸ where the Λ_c daughters, the D^* daughters and the proton form the candidate in cases ¹²⁴⁹ (1), (2), and (3), respectively, and the $\pi^{+}\pi^{-}$, the τ^{+} and the μ form the extra track, ¹²⁵⁰ respectively. The background sample is form by every other track n the event. The BDT $_{1251}$ can either be trained on hard or soft extra track(s).

¹²⁵² The following variables are used as input features in the BDT:

 $_{1270}$ • Bp_VTXISOBDTHARDFISRTVALUE: BDT output when using sample (1) ;

 1271 • Bp_VTXISOBDTHARDSECONDVALUE: BDT output when using sample (2) ;

 $_{1272}$ • Bp_VTXISOBDTHARDTHIRDVALUE: BDT output when using sample (3).

¹²⁷³ B.5 Tau isolation BDT

¹²⁷⁴ A BDT is trained on $B^0 \to K^{*0} \tau^+ \tau^-$ events giving separation between signal tracks ¹²⁷⁵ (ST) (from the $B^0 \to K^{*0} \tau^+ \tau^-$ decay) and non-signal tracks (NST) (all other tracks in ¹²⁷⁶ the event). The BDT was originally created for the $B_s^0 \to \mu^+ \mu^-$ analysis, later to the ¹²⁷⁷ $B_s^0 \to \tau^+\tau^-$ analysis and finally it was re-optimized for the $B^0 \to K^{*0}\tau^+\tau^-$ analysis. For ¹²⁷⁸ $B^0 \to K^+\tau^+\tau^-$, we used the output of the BDT trained on $B^+ \to K^{*0}\tau^+\tau^-$, whereas for the normalisation channel we use the output of the BDT trained on $B_s^0 \to \tau^+\tau^-$. The ¹²⁸⁰ NST are divided in non-isolating tracks, i.e. tracks coming from a decay vertex that is ¹²⁸¹ part of the signal's decay chain, and isolating tracks, i.e. tracks coming from other vertices ¹²⁸² in the event.

 1283 For each NST, a common vertex with the ST, V, is defined as the midpoint along the ¹²⁸⁴ line of closest approach of the two tracks. For the BDT, the following input features are ¹²⁸⁵ used:

- \bullet min d/σ_d , where d is the distance between the NST and the PV and σ_d is the ¹²⁸⁷ corresponding uncertainty. The minimum is found among all the PVs in the event;
- 1288 p_T of the NST;
- 1289 angle between the NST and the ST;
- $fc = \frac{|p^{ST} + p^{NST}|\alpha|}{|p^{ST} + p^{NST}|\alpha| + p^{ST}}$ $f c = \frac{|p^{ST} + p^{NST}| \alpha + p^{ST}_{T} + p^{NST}_{T}}{p^{ST} + p^{NST}_{T} + p^{NST}_{T}},$ where α is the angle between the total momentum of 1291 the NST and the ST and the direction between the PV and V;
- \bullet the distance of closest approach (DOCA) between the NST and the ST;
- \bullet the distance between V and the B^+ decay vertex;
- $_{1294}$ the distance between V and the PV.

 The isolating tracks are used as the signal proxy and the non-isolating tracks are used as the background proxy. Tracks with high BDT values (isolating tracks) are likely to come from the signal candidate whereas tracks with low BDT values are likely to come from background.

 1299 a, b and c are defined as the number of tracks in the event with $BDT < -0.09$, 1300 BDT < -0.05 and BDT < 0, respectively. The following variables are created for τ^+ 1301 and τ^- in $B^+ \to K^+ \tau^+ \tau^-$ / for \bar{D}^0 and D_s^+ in the normalisation channel:

- 1302 ISOBDTFIRSTVALUE: $a + 100b + 1000c$;
- 1303 ISOBDTSECONDVALUE: sum of the BDT values for all tracks with $BDT < −0.05$;
- ¹³⁰⁴ ISOBDTTHIRDVALUE: sum of ISOBDTSECONDVALUE and the minimum of ¹³⁰⁵ the BDT values of all tracks in the event.