Simulation and MC request in LHCb LHCb Starterkit 2024

Emilio X. Rodríguez ¹

¹Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela

- **Simulation** is an imitative representation of a process or system that could exist in the real world.
- It plays a key role in LHCb analysis:
 - Helps to parametrize an hypothetical signal.
 - Capture the response of the detector to this concrete signal.
- Remember: You are never alone!

• = • •

LHCb data-flow in Run3

- Simulation is by far the most time-consuming step: tries to represent reality as much as possible.
- Gauss App. is the general manager of this stage.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simulation Blocks

Emilio X. Rodríguez

LHCL

æ

Generation

- A pp interaction is created, and the products are hadronized.
- Realistic approach: Hard QCD proccesses are combined with underlying event properties.
- Lots of generators: Pythia, Sherpa, MadGraph...

- EvtGen is responsible of creating a desired decay.
- It is controlled by DecFiles.
- Possibility of including cuts before the full detector simulation \rightarrow saves time!

Detector Simulation

- Final products are propagated through the detector: <u>Geant4</u>.
- \bullet Don't worry! \rightarrow a full geometry is already prepared!

Digitisation

- Digitisation is carried out by <u>Boole</u>.
- In LHCb we don't see particles, we see the electronic response (hits) of each subdetector.
- Signal trayectories and parameters (tracking) are built of the pre-stored hits.

- Luckily all the steps are run centrally:
 - Step-by-step checks.
 - Pre-processed volume definition.
 - Code made public.
- Each PAWG is responsible of submitting the mc provided analysis needs.
- A very active and nice group of people (Liaisons) always happy to help!

- **QEE:** Jiuzhao Li, Emilio X. Rodríguez.
- **B**&**Q**: Ning Qin, Gabriele Romolini.
- Charm: Francesco Terzuoli, Jianyu Zhang.
- RD: Thomas Long, Jan Peter Wagner.
- BtoC: Zhihong Shen.
- B2noC: Edoardo Mariani.
- B2OC: Aleksandrina Docheva, Tianwen Zhou.
- Semileptonic: Bogdan Kutsenko, Federico Manganella.
- IFT: Chenxi Gu, Qiuchan Lu, Federica Fabiano.
- Flavour Tagging: John Wendel.
- EMTF: Gregory Ciezarek.

Preparing a MC request: First questions to answer

- Are there avaliable samples matching our needs?
- Are there decfiles?
- What should I include in the decfile?
- Simulation version?
- Filtered request?
- Stripping?
- Year? Polarity? Number of events?


```
# EventType: 12115088
# Descriptor: [B+ -> K+ mu+ mu- pi+ pi-]cc
# NickName: B+ K+mmpipi=DecProdCut
Ħ
# Cuts: DaughtersInLHCb
#
# Documentation: Decay file for B+ -> mu+ mu- pi+ pi- K+
# EndDocumentation
Ħ
# PhysicsWG: Exotica
# Tested: Yes
# Responsible: Emilio X. Rodriguez
# Email: emilio.xose.rodriguez.fernandez@cern.ch
# Date: 20240521
# CPUTime: <1min
Decay B+sig
1.000
      K+ mu+ mu- pi+ pi- PHSP:
Enddecav
CDecay B-sig
Ħ
End
#
```

- Eventtype: Unique 8-digit number identifier.
- Important: Comments are also passed to Gauss!
- We can always force a specific decay taking place in a reasonible way.
- Also important: Model to generate the decay.

< ロ > < 同 > < 三 > < 三 >

Decfile Preparation

```
# InsertPythonCode:
# from Configurables import LoKi_FullGenEventCut
# Generation().addTool(LoKi_FullGenEventCut, "TightCuts")
# tightCuts.Code = "( count ( hasGoodB ) > 0 )"
#
# tightCuts.Preambulo += [
" "from Gaudikernel.SystemOfUnits import GeV"
# , "hasGoodB0 = GINTREE(( 'mu+' == GAESID ) & ( GPT > 0.95*GeV ) & ( GP > 5.78*GeV ))"
# , "hasGoodB0 = GINTREE(( 'mu+' == GAESID ) & ( GNINTREE(( 'K-! == GAESID ) & ( GPT > 0.23*GeV ) & ( GP > 1.9*GeV ), HepMC.descend
# , "hasGoodB0 = GINTREE(( 'Mu+' == GAESID ) & ( GNINTREE(( 'K-! == GAESID ) & ( GPT > 0.23*GeV ) & ( GP > 1.9*GeV ), HepMC.descend
# , "hasGoodB0 = GINTREE(( 'Mu+' == GAESID ) & ( MasGoodD0 )"
# , "hasGoodB0 = ( GBEAUTY & GCHARM & hasGoodDst0 & hasGoodMu )"
# ]
# EndInsertPythonCode
```

- Bussiness turn difficult when we want to include cuts at generator level.
- Useful to reduce computiational time.
- LHCb acceptance widely used: allows to see products within the geometric acceptance.

< ロ > < 同 > < 三 > < 三 >

- Full Simulation: Full detector simulation for each pp interaction proccess.
- **ReDecay:** Saves the underlying event N times, whereas it is producing a signal decay each time.
- **Particle Gun:** No pp collision, throws a single particle with desired kinematics.
- Tracker only: Turn of calo and muon systems.

The different simulation outputs can be summarized as follows:

- SIM: Only Gauss output.
- **DIGI:** Samples with Boole digitisation.
- **XDIGI:** Extended info from Gauss saved in a DIGI file.
- (m)DST: Output with Reconstruction information.
- XDST: Extended info from Gauss and Boole.
- LDST: Samples with reco and additional linker tables.
- MDF: Samples emulating real data taking samples.

- Based on analysis requirements, different Sim types are avaliable.
- New realeases include not only relevant processing configs, but also updated detector simulation.
- Rule-to(often)-Use: Choose the latest release.

Emilio X. Rodríguez

- Types:
 - Sim09: Supports Run 1,2 until stripping. The most widely used during Run2. Will become deprecated soon.
 - Sim10: Until Stripping. New detector geometry definition. **Oficial** version for Run 2. Also oriented to Upgrade studies.
 - Sim11: Updated LHCb requirements after Upgrade 1 (geometry, luminosity conditions...).

- Good solution for analysis looking for a balance between number of events being requested and computational time.
- Saves disk space by only writing events verifying a particular trigger/stripping decisions.
- Specific roadmap for Filtered MC Requests.

- Check the number of events you need: both with supervisors and/or liaisons.
- Request only what you need: think that central productions can be delayed as user-traffic increases.
- Limits:
 - 4M events for DST files.
 - 20M per year for mDST.
 - Bigger requests would need PPG approval, which may delay the proccess.

1 sim-version: 09 name: Multimuons puzzle 3 inform: 4 emrodrig 5 - iiuzhao 6 jcidvida - hyc 8 tmombach 9 - tlong WG: OEE file-format: DST samples: - event-types: - 12115045 16 - 12115077 18 - 12115058 - 12115085 20 - 12115040 - 12115852 24 - 12115074 - 12115063 26 data-types: - 2018 28 - 2016 29 num-events: 500k 30 priority: 1b

- Request via Gitlab project.
- Very comprehensive arrangement of options.
- It automatically autocompletes: the rest of options are generated in line.
- Checks are run automatically with a pipeline. Once it is done, the request can be sent.

< ロ > < 同 > < 三 > < 三 >

When a MC Request Fails

Draft: W wme

2 Conser Emilio Xose Rodriguez Fernandez requested to merge Wine the into maxim 4 months ago
 Overview
 Commits Pipelines Changes
 Commits Pipelines Changes
 Commits Pipeline Commits Pipeline Changes
 Pipeline #7688668 failed
 Pipeline #7688668 failed
 Pipeline failed for 582238d3 on Wine 4 months ago
 Conserview
 Cosed by
 Emilio Xose Rodriguez Fernandez 4 months ago
 Reopen
 Merge details

• The changes were not merged into main

When a MC Request Suceeds

Multimuons new

Edited 5 months ago by Emilio Xose Rodriguez Fernandez

- The status of the production can be checked in the Transformation Monitor: access through DIRAC portal.
- A bunch of (sometimes nasty) mails will inform in real time about the status.
- Once in the GRID the liaisons/conveners/user lost control of the production.

134419		Simulation	ulation Done 1b		Multimuons puzzle 2016 pp MagDow 2024-06-20 2024-06-20 1						Beam6500GeV-2016-MagD Sim09m/Trig0x6139160F/R				
	$Id \downarrow$	Туре	State	Pr	WG	Name	Sim/Run conditions		Proc. pass		Event type	Events r	Events i	Progress	
	134										12115088	500,000	527,758	105.55%	
	EvenType: 12115088 Description: B+_K+mmpipi=DecProdCut Test state:														
Ħ	134										12145095	500,000	533,688	106.74%	
Ξ	134										12145435	500,000	516,018	103.20%	

Numbe

12115008 (B+ K+1a2mumumumu,ma1=1.75GeV,ta1=10ps,ma2=3.0GeV,ta2=0fs,DecProdCut)
Gauss v49r22 - DecFiles v30r70 - APPCONFIG v3r408
DDDB dddb-20170721-3 - SIMCOND sim-20170721-2-vc-md100
Sim09-Beam6500GeV-2016-MagDown-Nu1.6-25ns-Pythia8
Thu Feb 10 22:31:50 2022

Interaction Counters										
Mean Number of generated Pile-Up interactions	Mean Number of non-empty generated Pile-Up interactions	Mean Number of accepted Pile-Up interactions	total cross- section [mb]	b cross- section [mb]	Double b cross-section [mb]	c cross- section [mb]	Double c cross-section [mb]	Prompt D cross-section [mb]	b and c cross- section (mt	
1.59762	2.00282	2.4673	100.305	0.79210	0.012266	9.0712	1.26700	0.24181	0.21184	
± 0.00016	± 0.00022	± 0.0051	± 0.070	± 0.00055	± 0.000069	± 0.0018	± 0.00070	± 0.00031	± 0.00029	

	Hadron Counters													
Generato level cut efficiency	Fraction of accepted B0	Fraction of accepted B+	Fraction of accepted Bs0	Fraction of accepted b-Baryon	Fraction of accepted D0	Fraction of accepted D+	Fraction of accepted Ds+	Fraction of accepted c-Baryon	Fraction of accepted B	Fraction of accepted B*	Fraction of accepted B**	Fraction of accepted D	Fraction of accepted D*	Fraction of accepted D**
0.1540	3 0.4029	0.3931	0.11906	0.08492	0.3671	0.34157	0.18007	0.11122	0.20872	0.61880	0.17248	0	0	0
± 0.0003	5 [±] 0.0012	± 0.0012	± 0.00079	± 0.00068	± 0.0010	± 0.00099	± 0.00081	± 0.00066	± 0.00071	± 0.00085	± 0.00066	±0	± 0	± 0
	Signal Counters													
	particle cut efficiency anti-particle cut efficiency													

0.15356

	10.00030	± 0.00030	
of accepted events/generated events: 323189 /	128711306 = 0.002	511	_
r of interactions in accepted events/generated inte	eractions: 7974027	257785269 = 0.00309	3

0.15461

Number of interactions in accepted events/generated interactions: 797402 / 257785269 = Statistics generated from 1001 jobs log for Sim09I Prod. ID: 155863; Req. ID: 95774.

Script version: 20210427

3 🕨 🖌 3

 PAWG liaisons prepare the statistic tables, which can be acessed here for <u>SIM09</u> and here for <u>SIM10</u>.

Conclusions

- Simulation is not an easy task: a lot of information, options, outputs...can make your life very difficult.
- As said: you are not alone! Liaisons always happy to help you.
- Now the adventure of Simulation starts for you!

