
The LHCb Software Stack:
and contributing to LHCb software

Andy Morris

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Andy.M@cern.ch – [27/Nov/24]

b

c
l
ν

ALPaCA

mailto:Andy.M@cern.ch

What is the stack and LHCb software?

• In general a software stack represents a self-contained (and
sometimes interdependent) set of software creating a platform for
software to run on

• In LHCb this generally refers to all of our centralised software e.g.
• The framework almost everything is based on – Gaudi
• The description of LHCb’s geometry and conditions, event model, … – LHCb
• The functors and general reconstruction algorithms – Rec
• The HLT1 framework (separate to Gaudi) and its execution – Allen
• Configuration for HLT2 and sprucing – Moore
• The nTupling software – DaVinci
• The simulation framework – Gauss

2

What is the stack and LHCb software?

• During your time at LHCb you will likely contribute to a software
project
• As examples, they roughly fall into these categories

• The method by which these contributions enter production are:
1. Check out the software using git
2. In a new branch, make the changes you’d like to see
3. Make a merge request into the project you’d like to edit

3

RTA DPA Simulation

Moore
Allen
Rec
LHCb

Moore
DaVinci
Rec
LHCb

Gauss
LHCb

When to use the stack

• It is possible to checkout and build the entire stack – this is often
overkill!
• The full stack, when built, represents 𝒪(10GB) of storage space to fit
• Depending on the machine used, it can take hours to build (even on the

fastest machines it will be 40+ mins)!
• However if you are making several interdependent changes to

multiple projects, it can then be necessary to check out the whole
thing
• E.g. You’re adding a new functor to Rec, and then using this in a trigger line in

Moore – this might be a time to check out the full stack
• E.g.2 You’re writing software which is dependent on another person’s merge

request, which itself touches many things – another reason

4

How to check out LHCb software – lb-dev

• To check out a specific project with the lhcb-software we have lb-dev!
• E.g. for moore: lb-dev --platform x86_64_v3-el9-
gcc13+detdesc-opt+g Moore/v55r16p4 –-name MooreDev

• lb-dev = check out a project
• --platform = Specifying the binary tag to be used (more on this later)
• The project to be installed and its version
• --name MooreDev = The folder name for the dev area

• For changes within a single project e.g. to cuts in a trigger line, this is
likely enough!

5

How to check out LHCb software – The stack

• To check out the full stack instructions may be followed from here -
• https://gitlab.cern.ch/rmatev/lb-stack-setup/-/blob/master/README.md

• Not all the projects need to be built locally
• It is possible to specify cvmfsProjects in the configuration which will

take versioned builds of those projects from cvmfs – you won’t need to build
them locally, but they can’t be modified

6

https://gitlab.cern.ch/rmatev/lb-stack-setup/-/blob/master/README.md

Platforms and Binary tags

• When it comes to LHCb software – portability is very important!
• Sometimes CPUs will be available with x86 architecture, sometimes ARM

architecture
• The compiler to be used (gcc, clang, …) can be specified
• The operating system needs to be specified – usually el9 very occasionally centos7
• Sometimes GPUs will be available, sometimes not
• Sometimes it’s best to have a debug build, other times an optimised build
• Sometimes we need to use LHCb’s geometry and conditions from detdesc, other

times dd4hep
• These are two different ways to input the conditions and geometry:
• In Run 3, dd4hep is used for data (this is the default), detdesc is used for MC

7

x86_64_v3-el9-gcc13+detdesc-opt+g

Nightly builds

• The nightly builds give a centralised place where we build the most
recent versions of the codebase every day

• This both acts as a test that the software is working and also provides
a centralised place where people can fetch the most up-to-date builds
of the software
• --nightly <day of the week> is an option which may be given to lb-dev to fetch

the nightly build of a software project instead of a tagged version (e.g. vXrYpZ)

8

https://lhcb-nightlies.web.cern.ch/nightly/

Nightly builds

9

Examples of
binary tags

So
ft

w
ar

e
pr

oj
ec

ts

Testing and QM tests

• When contributing to LHCb software, especially when adding new
functionality to the code, it’s often the case that we want to write
automated tests for this
• This will ensure that future changes don’t break this earlier functionality
• All new functionality should in principle come with an accompanying test!

• The way this is done in LHCb’s stack is with QM-tests – however this is
being depreciated in favour of instead using pytest

• These tests can be run with make test
• Arguments can be specified to run specific tests only, multiple tests at once…

10

https://gitlab.cern.ch/rmatev/lb-stack-setup/-/blob/master/README.md

MRs and centralised testing

• Once happy with your code changes, a merge request (MR) can be
put together to request it be added to the production codebase

• An MR contains your intended changes to the code as well as a
description you write of what it does
• In this description it’s good to include as much information as possible e.g. for

changes to the trigger, tests on throughput and bandwidth should be included

• Let’s take a look at an RTA MR together:
• https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/3793

11

https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/3793

MRs and centralised testing

• For RTA MRs, once it has been given to the shifter, they may request a ci-test
• This will recreate the nightly tests but including your changes building the relevant

parts of the stack and checking nothing has broken for any platform
• This will also run all of the tests for projects with the MR’s changes as well as

downstream projects

• It’s possible to include the changes from multiple MRs at once if you have
several interdependent ones
• It’s also possible to request additional ‘PR’ tests to run on the output of the

ci-test, typically testing the bandwidth and/or throughput of your changes,
comparing it to the nightlies – these are specified in the MR’s labels
• Let’s look at this in the same MR as before

12

The plan for today

1. Using lb-dev we’ll check out Moore’s Hlt library:
• lb-dev --platform x86_64_v3-el9-gcc13+detdesc-opt+g
Moore/v55r16p4 --name MooreDev
• cd MooreDev
• git lb-use Moore
• git lb-checkout Moore/v55r16p4 Hlt
• make install

13

Explaining the individual parts

• The parts in ‘step 1’ all do slightly different things:
• lb-dev is creating the local directory and setting up some initial files
• lb-use is actually checking out the core parts repository from gitlab

• It knows where to get this from due to the setup done by lb-dev
• lb-checkout is then adding the specific additional packages needed on top

(this time Hlt, the code which configures HLT1*, HLT2 and sprucing)

14

The plan for today

2. Modifying the snippet found here*:
• Test the bandwidth of a trigger line (try finding the one from your own analysis)

using the instructions in the doc string
• Change the selection in your trigger line and run the snippet again – comparing the

bandwidths
• If you don’t know which trigger line to use, try “Hlt2QEE_DiMuonNoIP_massRange3”, this can

be found in qee/dimuon_no_ip.py

• The lines may be found in:
• Hlt/Hlt2Conf/python/Hlt2Conf/lines

*https://gitlab.cern.ch/-/snippets/3342

15

https://gitlab.cern.ch/-/snippets/3342

