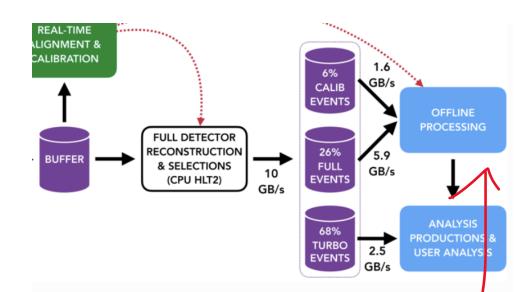
Running/understanding HLT

Luke Grazette, Ivan Cambon Bouzas



Contents

- Lecture-style (Now)
 - Re-introduction to the LHCb DataFlow
 - Hlt1
 - Hlt2 and the persistency Model
 - Sprucing
- Hands-on Session (Later)
 - Running Hlt2 and interpreting the output
 - Configuring Hlt2 algorithms and writing lines
 - HItEffChecker and other useful tools

Moore and Hlt2

"HLT2, which performs a high-fidelity reconstruction and makes a decision based on the full detector read-out information."

Docs:

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/index.html

MM Channel:

`Upgrade Hlt2` for help/advice/discussion.

(SEARCH before asking!)

Sprucing, also in Moore

Running Moore

For purposes other than development, can use the lhcb releases mounted on CVMFS.

Ib-run Moore/<verson> gaudirun.py <options>

source /cvmfs/lhcb.cern.ch/lib/LbEnv

For development, see: yesterday's Talk by Andy on lb-dev

Specifies appropriate binary tag.

For Data: dd4hFor MC: currently requires `+detdesc` builds

ep (default) builds

lb-run -c x86_64_v3-el9-gcc13+detdesc-opt+g Moore/v55r0 gaudirun.py options/hlt2/v0.py 2>&1 | tee hlt2_v0.log

Line Development

[gitlab repo]

Parameters of Interest

Physics use-case -> mode/topology:

e.g. precision electroweak analyses in Run3 -> high pt single muon and dimuon triggers

Rate [kHz]:

On modern Hlt1 minbias, (# pass * input_rate (~1MHz) / #events)

Bandwidth [MB/s]:

On modern Hlt1 minbias, Rate * avg. Event Size. ~ Rate * filesize / #events

Purity [%]:

Rate estimated from cross-section and luminosity / Rate of line acceptance

Signal Efficiency [%]:

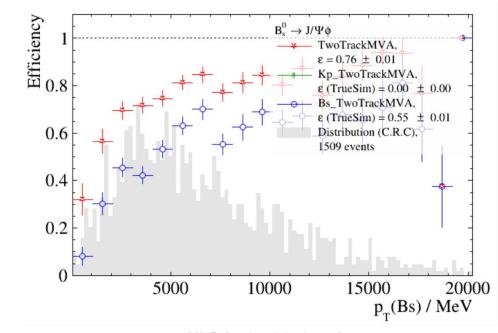
On modern Hlt1 signal MC,

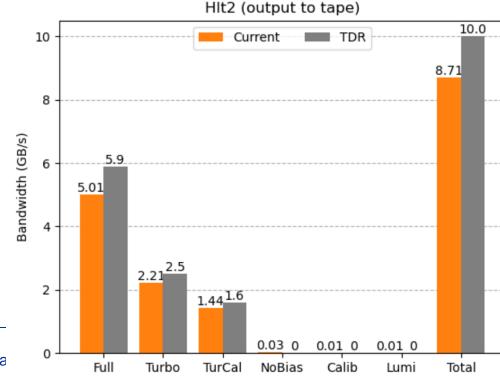
Retention (#pass/#events) or `CanRecoChildren` efficiency or ... (#pass / # events with long-charged children particles within LHCb Acceptance)

Instructions

There's many existing lines and therefore many many examples per WG of how to do things

- Really the first call is to contact the relevant PAWG RTADPA Liaisons for your lines
- They'll point you towards their own scripts/ guidelines for contributing.


HItEffChecker: [docs]


A tool to study HLT efficiencies, rates and overlaps

Bandwidth Tests: [docs]

The bandwidth tests emulate a trigger, reports bandwidths (and rates/overlaps) per stream, WG and line.

