
LHCb StarterKit 2024: Practice session ∗

DaVinci Run 3

StarterKit Organizers

November 2024

This is the version with solutions. Solutions are marked in this font.

Goals of the session

After a long week of lessons, having headaches after using the software of our beloved collaboration, and
having fun at yesterday’s social event, now is time to shine :). In this session, we are going to put into
practice all the knowledge acquired during this week with some realistic examples of how to perform analysis
at LHCb.

For this first part, we are going to focus on something really important, which is tupling. Independently of
the physics analysis you do, the first step is always to check your data samples and create the famous ntuples.
So, this morning we are going to create ntuples from scratch in Run 3. This time, we are all together doing
the exercise, so do not hesitate to ask around, for the next time it will be you on your own.

Now, let’s get started!

1 Create your own GitLab repository

First step: let’s create a repository where we will store our scripts! As a rule in LHCb, everyone has to
preserve the code to run the analysis, including the production of the ROOT files. You must:

• Create a new repository on your personal GitLab.

• As you write the scripts, regularly commit them.

• When the scripts are ready, add a little README explaining how to run them, which software versions
to use, and other necessary instructions to facilitate reproducibility.

2 Introduction

Today we are going to study the decays D+
(s) → ϕπ+ decays1.

Before we start, let’s discuss some physics questions about this decay.

• Which type of the transition is this decay? (Strong, weak, electromagnetic)? Weak.

∗Found a mistake in this document? Please contact lhcb-starterkit-organisers@cern.ch
1The D+

(s)
stands for both D+ and D+

s mesons

1



• Which of the final state particles are stable?

Pion.

• If there are unstable particles, which decay mode(s) could be used to reconstruct them?

The ϕ resonance decays mainly to two kaons, either neutral or charged, but in LHCb
we can only reconstructed the charged one. It may also decay into lighter unflavoured
resonances and to pions, but also into a dilepton pair.

• Are there unstable particles flying measurable distance before the decay?

The charm meson D+
(s) flies before decaying.

• Why is it interesting to study such a decay mode?

There are many reasons, one can perform a CP violation analysis. They are also used
as control modes to study other decays with similar topology, like D+

(s)→ π+ℓ+ℓ−.

Even thought the kaon decay of the ϕ resonance ahs higher BF, today we will consider ϕ decaying to µ+µ−

(we don’t search for easy ways!).

2.1 Dataset and trigger lines

When you start an analysis, it’s important to know how the data that will be relevant for you was recorded
and, in particular, whether it went to the Turbo stream or sprucing. The first step to get this information
is to know which working group your analysis belongs to. Once you do know it, you may reach out to
the corresponding RTA/DPA liaisons. In this case, because of the presence of the charm meson, the HLT2
lines that select these decays belong to the Charm Working Group. The decay is stored through the Turbo
stream.

Next, we need to find a possible HLT2 line to analyze our decay. Note that even if there is not a specific
trigger line to your specific case, there are some procedures to work around it.

• Your task now is to find your trigger line. For that, go the HLT2 lines reference https://lhcbdoc.web.
cern.ch/lhcbdoc/moore/master/selection/hlt2_lines_reference.html and check the Charm stream.
Hint: The line should start with Hlt2Charm DpDsp.

The line is Hlt2Charm DpDspToPipMumMup.

• Once you have found it, check the DecayDescriptor of the ParticleContainerMerger to make sure
we are in the right place. Does it contain our decay of interest?

The decay descriptor is [D+ -> J/psi(1S) pi+]CC . There is no D+
(s) → ϕ(→ µ+µ−)π+,

because intermediate particles have symbolic names.

• Check if there is any decay of the intermediate resonance that is relevant for us.

The TwoBodyCombiner: Charm RareCharm MuMuPair has a J/ψ→ µ+µ− decay descriptor which
leads us to our final state.

• Finally, you can check the Moore code of the line to check which cuts are made in the candidates.

2.2 Simulation

When doing analysis in High Energy Physics, the use of simulations is essential, and this has no exception.
It is important to find out if there are Monte Carlo samples of your decay. In the simpler cases, you can
simply check the BookKeeping. If you have any doubt, just ask your WG’s MC liaisons. In this case, we
can confirm that there are official 2024 MC samples for the D+

s → ϕ(→ µ+µ−)π+ decay.

2

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/selection/hlt2_lines_reference.html
https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/selection/hlt2_lines_reference.html


• To find the available samples in the Bookkeeping, the EventType of the simulation is going to be
important. Find it in the decfile reference http://lhcbdoc.web.cern.ch/lhcbdoc/decfiles/. In
this lesson we will only have simulation of the channel D+

s → ϕπ+. Hint : The name should have this
structure: Ds...,mm=FromD.dec

The EventType is 23173003, with name Ds phipi,mm=FromD.dec

3 Finding your data in the Bookkeeping

The first step is always checking where our data and simulations are located on the Grid. For that, we use
the Bookkeeping.

• First we are going to find our data samples. Look for 2024 samples with all sub-detectors included.
Remember that we are using the Turbo stream, and the Sprucing24c3 version.

• Next, we should go for the Monte Carlo samples. Use the EventType you got before and find the
samples. Note: There are going to be multiple samples inside the decay folder. Choose the one with
W in the name. In these, the HLT2 reconstruction was processed.

• Get the CondDBtag and DDDBtag of your simulation in order to add them in the yaml file options.
Remember that you’ll have to run MC in detdesc platforms!

We can know the compatible platforms with a given DaVinci version by typing lb-run

--list-platforms DaVinci/v64r13 We are happy to use x86 64 v2-el9-gcc13+detdesc-opt.

• Advanced: From the .py with the .dst files, get a subsample of LFNs and create a catalog with
them.

The MC DSTs we are interested for today are located in this folder:

Figure 1: Location of the simulation in the bookkeeping.

4 Minimal DaVinci Job

Now it is time to start playing around with DaVinci. We need to choose a release of DaVinci, which
will in general be the most recent one, unless there is a strong reason not to do so. You can check the
list of DaVinci releases here: https://lhcbdoc.web.cern.ch/lhcbdoc/davinci/releases/, so we will use
DaVinci/v64r13. First, we are going to write the most basic script we can do, the so-called minimal. Ideally,

3

http://lhcbdoc.web.cern.ch/lhcbdoc/decfiles/
https://lhcbdoc.web.cern.ch/lhcbdoc/davinci/releases/


in a real analysis the DaVinci script should be compatible to run both real data and simulation, and that’s
what we’ll do here.

• Create a DaVinci options file with a main function defined.

• Define your input data using the get particles function. Define also the corresponding HLT2 filter
(create lines filter).

• Define the fields dictionary. Remember that the DecayDescriptor should match the one you found
before in the HLT2 line reference.

• Create a FunctorCollection with the Functors mass, η, pT and ϕ in order to retrieve this information
from all the particles of the decay.

• Create the FunTuple and finish the DaVinci script.

• Develop two .yaml files, one for data and one for simulation, considering its differences. Use the data
and Monte Carlo samples as well as the CondDB and DDDB tags you found before if you run within
a detdesc platform, or geometry and conditions version if you run in dd4hep.

• Run DaVinci over data and simulation until you get candidates in your ntuples (Around 50k in data).
Use the following command

lb-run DaVinci/v64r13 lbexec options_file:main options.yaml

For that, import the following objects:

from DaVinci import make config, Options

from DaVinci.algorithms import create lines filter

from FunTuple import FunTuple Particles as Funtuple

from PyConf.reading import get particles

from FunTuple import FunctorCollection

import Functors as F

In case you didn’t manage to get the data from the bookkeeping here there is a list of DSTs you can use to
run your DaVinci jobs:

• data files

1 -root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00000891_1.charm.dst

2 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00000947_1.charm.dst

3 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00000948_1.charm.dst

4 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00001791_1.charm.dst

5 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00002088_1.charm.dst

6 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00002559_1.charm.dst

7 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00003657_1.charm.dst

8 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00003838_1.charm.dst

9 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00003846_1.charm.dst

10 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00004566_1.charm.dst

4



11 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00004595_1.charm.dst

12 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00004637_1.charm.dst

13 - root :// x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.

DST /00243718/0000/00243718 _00004904_1.charm.dst

14

• MC files

1 - root :// x509up_u147315@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/MC /2024/ DST

/00251770/0000/00251770 _00000001_1.dst

2 - root :// x509up_u147315@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/MC /2024/ DST

/00251770/0000/00251770 _00000008_1.dst

3 - root :// x509up_u147315@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/MC /2024/ DST

/00251770/0000/00251770 _00000009_1.dst

• condDBtag = dddb-20240427 and DDDBtag = sim10-2024.Q3.4-v1.3-mu100

def main(options: Options):

Minimal DaVinci Job + fiels

line = f"Hlt2Charm_DpDspToPipMumMup"

data = get_particles(f"/Event/HLT2/{line}/Particles")

prefilt = create_lines_filter(name=f"PreFilter_{line}", lines=[line])

fields = {"D": "[D+ -> (J/psi(1S) -> mu- mu+) pi+]CC"}

basicinfo = FunctorCollection({

’M’:F.MASS,

’ETA’:F.ETA,

’PHI’:F.PHI

})

features = {"ALL": global_features}

dtt = Funtuple(name="D2pimumuTuple",

tuple_name="DecayTree",

fields=fields,

variables=features,

inputs=data,

event_variables=evt_info)

alg = {line: [prefilt, dtt]}

return make_config(options, alg)

The YAML file would look like (MC):

input_raw_format: 0.5

input_type: ROOT

output_type: ROOT

input_process: Hlt2

input_stream: charm

simulation: True

data_type: "Upgrade"

5



lumi: False

input_files:

- root://x509up_u147315@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/MC/2024/DST/00251770/0000/00251770_00000001_1.dst

print_freq: 1000

evt_max: 8000

ntuple_file: Ds2mumupi_MC_MagDown_2024_tuple.root

dddb_tag: dddb-20240427

conddb_tag: sim10-2024.Q3.4-v1.3-mu100

And for real data processing:

input_raw_format: 0.5

input_type: ROOT

output_type: ROOT

input_process: TurboPass

input_stream: charm

simulation: False

data_type: "Upgrade"

geometry_version: run3/2024.Q1.2-v00.00

conditions_version: master

scheduler_legacy_mode: False

input_files:

- root://x509up_u585@eoslhcb.cern.ch//eos/lhcb/grid/prod/lhcb/LHCb/Collision24/CHARM.DST/00243718/0000/00243718_00000891_1.charm.dst

print_freq: 1000

evt_max: 50000

ntuple_file: D2pimumu_turbo_sprucing24c3_pp_MagDown_2024_tuple.root

5 Adding fields

Besides the information of the head particle of the decay we will usually also need the information of the
rest of particles to perform a proper analysis. This means we need to add branches to our ntuples.

• Add a field for each daughter of the D+
(s): the ϕ and the π+.

• Do it also for the muons of the ϕ→ µ+µ− decay.

• Check that everything worked properly.

You should update the fields dictionary to:

fields = {"D": "[D+ -> (J/psi(1S) -> mu- mu+) pi+]CC",

"phi": "[D+ -> ^(J/psi(1S) -> mu- mu+) pi+]CC",

"mum": "[D+ -> (J/psi(1S) -> ^mu- mu+) pi+]CC",

"mup": "[D+ -> (J/psi(1S) -> mu- ^mu+) pi+]CC",

"pi": "[D+ -> (J/psi(1S) -> mu- mu+) ^pi+]CC"}

6 Fun with Functors

Once the minimal DaVinci Job is done, the next step is to fill our ntuples with all the branches we need for
the analysis. Now, in Run 3 we run with much higher instantaneous luminosity, which makes the amount
of data taken much bigger than in Run 1 and 2. For this reason, the choice of functors added to the ntuple
must be made in an optimal way (only add information we will most likely use).

6



6.1 Adding more information to your decay

First, we are going to add more features to our script by adding a custom Functor Collection or using the
already-defined collections in the DaVinci project. Remember you can see all the Functor collections available
in: https://lhcb-davinci.docs.cern.ch/autoapi/FunTuple/functorcollections/index.html.

• For the final state particles (muons and pions), add PID information (ProbNNpart and PID part, with
part=P,PI,K,MU), kinematics (momenta, energy, pseudorapidity).

• For the composite particles (ϕ and D+
(s)) add the functors which allow you to get information how the

quality of the particle reconstruction was made (DOCA, DIRA, χ2, IPCHI2, flight distance χ2...).

You need the following imports:

from PyConf.reading import get pvs

import FunTuple.functorcollections as FC

from GaudiKernel.SystemOfUnits import MeV

Hint : In the DaVinci Run 3 lessons you studied the B+ → J/ψ(→ µ+µ−)K+ decays. At track level the
decay is the same as the one which we are studying today, so you can take a view in the class to get inspired
:)

We can use the Kinematics and ParticleID(extra info=True) to retrieve the information. The
reconstructed information can be retrieved with this collection of functors:

comp_features = FunctorCollection({

"BPVFDCHI2" : F.BPVFDCHI2(pvs),

"BPVFD" : F.BPVFD(pvs),

"BPVLTIME" : F.BPVLTIME(pvs),

"BPVDIRA" : F.BPVDIRA(pvs),

"MAXDOCACHI2" : F.MAXDOCACHI2,

"MAXDOCA" : F.MAXDOCA,

"MAXSDOCACHI2" : F.MAXSDOCACHI2,

"MAXSDOCA" : F.MAXSDOCA,

"END_VX" : F.END_VX,

"END_VY" : F.END_VY,

"END_VZ" : F.END_VZ,

})

6.2 Adding the Event Information

Some information about the decay we’re studying does not refer to a given particle of our decay chain, but to
the entire event. For example, one can think of the number of charged tracks that have been reconstructed
or the Run Number (a run in data taking is a collection of events taken during a small amount of time, no
longer than an hour). By default, the FunTuple will add both EVENTNUMBER and RUNNUMBER to your ntuple.

• Add the Event Information to your ntuples using the functor collection that we saw in the DaVinci
lesson.

• Advanced: Retrieve also the Reconstruction Summary information with the RECSUMMARY functor.
You’ll need to import the following line:

from PyConf.reading import get rec summary

You can find an example on how to use the functor below:

’nTracks’ : F.VALUE OR(-1) F.RECSUMMARY INFO(rec summary, ’nTracks’

7

https://lhcb-davinci.docs.cern.ch/autoapi/FunTuple/functorcollections/index.html


In this example, we are retrieving the number of charged tracks that have been reconstructed in a
given event, nTracks. Other variables can be retrieved by changing the argument nTracks for any
other that is listed here: https://gitlab.cern.ch/lhcb/LHCb/-/blob/master/Event/RecEvent/

include/Event/RecSummary.h?ref_type=heads#L48.

Also, check what the RecSummary functor collection adds to the ntuple.

6.3 Adding MCTruth info

As we said, the DaVinci script has to be made both for data and MC simulations. Until now we are in that
scenario, but it is very useful to also add the MC generation-level information to our simulation ntuple (MC
TRUE). It’s normally used when calibrating simulations in order to know signal efficiencies.

• Use the MCTruthAndBkgCat algorithm to retrieve MC TRUE information. For that, check the imple-
mentation we made during the lessons. Be sure that the code is made for running both over data and
MC samples.

• Advanced: Some functor collections have been made in order to get several MCTruth variables of
your decay. You’ll find a list of them in the functor collections reference given in section 6.1. Their
names start with MC (e.g. MCKinematics).

You need the following imports:

from DaVinciMCTools import MCTruthAndBkgCat

We can use the available functor collections in DaVinci:

mctruth = MCTruthAndBkgCat(input_particles=data, name="MCTruthAndBkgCat_functor")

variables = FC.MCKinematics(mctruth_alg=mctruth)

variables += FC.MCHierarchy(mctruth_alg=mctruth)

variables += FC.MCPrimaryVertexInfo(mctruth_alg=mctruth)

variables_head.update({"BKGCAT": mctruth.BkgCat})

variables_head += FC.MCPromptDecay(mctruth_alg=mctruth)

variables_comp += FC.MCVertexInfo(mctruth_alg=mctruth)

To add custom collections of functors:

variables = FunctorCollection({

"TRUEP": mctruth(F.P),

"TRUEPHI": mctruth(F.PHI),

"TRUEETA": mctruth(F.ETA)

})

6.4 Adding Trigger Selection information

One the most important tasks while doing your analysis is having information about the trigger that was
used to record your data. So addition information about the HLT1 or HLT2 lines that our data passed in
our ntuples will be mandatory

• Add information about the HLT1 trigger2 to your ntuples. Start from the two usual Hlt1TrackMVA and
Hlt1TwoTrackMVA. Add the TISTOS information to the ntuples (use the HltTisTos functor collection).

2Remember that this data is turbo, so it is directly the output of a HLT2 line

8

https://gitlab.cern.ch/lhcb/LHCb/-/blob/master/Event/RecEvent/include/Event/RecSummary.h?ref_type=heads#L48
https://gitlab.cern.ch/lhcb/LHCb/-/blob/master/Event/RecEvent/include/Event/RecSummary.h?ref_type=heads#L48


• Advanced: There is list of HLT1 lines regarding muon reconstruction, which can be really helpful in
our case. Look at the HLT1 lines at Allen https://allen-doc.docs.cern.ch/selection/hlt1.html

and add the muon and dimuon lines.

7 DTF and mass constraints

As we saw, the DecayTreeFitter algorithm is a fantastic tool to improve the resolution of our mass peaks
once we have knowledge of our decay. In this case, the ϕ → µ+µ− should have quite good resolution, but
we can apply some extra constraints to improve it a bit more.

• Add the DecayTreeFitter algorithm to your DaVinci script and add the features to the head of the
decay.

• First try to add a primary vertex constraint and see the effect it has on the mass resolution.

• Now add the ϕ mass constraint to the DecayTreeFitter. Note: If you notice it, the DecayDescriptor
of the line is D+ -> (J/psi(1S) -> mu- mu+) pi+, so the dilepton combination is labeled as J/ψ.
So, if we add the phi(1020) as a constraint the algorithm won’t know what particle are we trying
to apply the mass constrain to. We have to tweak the algorithm a little bit to make it work, which
consists on constraining the J/psi(1S) candidate and performing a mass substitution. For that, check
the following example https://lhcb-davinci.docs.cern.ch/examples/tupling/option_davinci_
tupling_DTF_substitutePID.html and infer how could it be applied to our case.

You’ll need to import the DecayTreeFitter class:

from DecayTreeFitter import DecayTreeFitter

This is how we add dtf fit results:

dtf = DecayTreeFitter(name="PV_dilep_Fit",

input_particles=data,

input_pvs=pvs,

substitutions=["D+ -> (J/psi(1S){{phi(1020)}} -> mu- mu+) pi+"],

mass_constraints=["phi(1020)"],

)

We can use the dtf object to obtain information using the fit result:

dtfinfo = FunctorCollection({

’MASS_PhiConstr’:dtf(F.MASS),

’PT_PhiConstr’:dtf(F.PT)

’CHI2DOF_PhiConstr’:dtf(F.CHI2DOF)

})

Does it make a huge effect to the mass resolution to perform the ϕ mass constraint?

Actually not, as muon momentum reconstruction doesn’t degrade the mass resolution very
much. The ϕ resonance is considered to have narrow width, but not as much as the J/ψ , and
this width has a similar order of magnitude than the mass resolution of the candidate.

8 Prepare your Analysis Production (optional)

Finally, the exercise if finishing. If you manage to get here, your DaVinci script should be run perfectly with
all the information you need for performing your analysis. So now, we want to run it over all the data and
simulated samples to start our analysis, and for that we have to prepare our Analysis Production (AP)

9

https://allen-doc.docs.cern.ch/selection/hlt1.html
https://lhcb-davinci.docs.cern.ch/examples/tupling/option_davinci_tupling_DTF_substitutePID.html
https://lhcb-davinci.docs.cern.ch/examples/tupling/option_davinci_tupling_DTF_substitutePID.html


• Clone the AP repository and create a branch with the name you want.

• Create a folder called sk-practice-session and copy your DaVinci options file inside.

• Prepare your info.yaml.

• Commit all your changes, and test the job locally.

• Once you’re happy push your commits to remote and check that the pipelines are running. Remember
to add the Starterkit label!

defaults:

wg: charm

application: DaVinci/v64r12

inform:

- name.surname@cern.ch

data_sprucing24c3_2024_MagUp:

input:

bk_query: /LHCb/Collision24/Beam6800GeV-VeloClosed-MagDown/Real Data/Sprucing24c3/

94000000/CHARM.DST

options:

entrypoint: sk-practice-session.options_file:main

extra_options:

input_raw_format: 0.5

input_type: ROOT

geometry_version: run3/2024.Q1.2-v00.00

conditions_version: master

simulation: False

input_process: TurboPass

input_stream: charm

output: DS2PHIPI.ROOT

MC_sprucing24c3_2024_MagUp:

input:

bk_query: /MC/2024/Beam6800GeV-2024.W31.34-MagUp-Nu6.3-25ns-Pythia8/Sim10d/HLT2-2024.W31.34/

23173003/DST

options:

entrypoint: sk-practice-session.options_file:main

extra_options:

input_raw_format: 0.5

input_type: ROOT

simulation: True

data_type: "Upgrade"

dddb_tag: dddb-20240427

conddb_tag: sim10-2024.Q3.4-v1.3-mu100

input_process: "Hlt2"

output: DS2PHIPI.ROOT

10


	Create your own GitLab repository
	Introduction
	Dataset and trigger lines
	Simulation

	Finding your data in the Bookkeeping
	Minimal DaVinci Job
	Adding fields
	Fun with Functors
	Adding more information to your decay
	Adding the Event Information
	Adding MCTruth info
	Adding Trigger Selection information

	DTF and mass constraints
	Prepare your Analysis Production (optional)

