Quantum for
connectivity

Roundtable

12:00-18:00 CET | 18 October 2024 | CERN, Geneva

Distinguishing the False from the Reasonable Promises of Quantum Computing.

By Pierre Fromholz

What is quantum mechanics?

1st Quantum Revolution

Noisy particle-wave duality

2nd Quantum Revolution

Sharp superposition and entanglement

1st revolution achievements

Lasers 1960 *Telecom, electronics fabrication and use*

Wikipedia

Magnetic resonance imaging (MRI) 1971 **Modern chemistry More research**

Wikipedia

3

2nd revolution achievements

Quantum materials 1911 Ex. *superconductors*

Wikipedia

Atomic clocks 1945 *In GPS*

Flash memory 1967

Wikipedia

Metrology

Wikipedia

Quantum key exchange and cryptography 1991 **More**

research

Quantum computers? 4

Quantum ABC: quantum state & the qubit

Quantum ABC: superposition & measurements

Quantum ABC: information

Quantum ABC: entanglements

Superposition between **two** qubits:

$|0\,0\rangle + |1\,1\rangle$

Measurement of only **one** qubit:

Collapse of **both** qubits:

 $|00\rangle$

Quantum ABC: coherence and decoherence

Recipe for a quantum computer

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities

Bits + Transformations (called gates) + Measurement + Little noise

Standard computer Quantum computer

Qubits + Entanglement + More transformations (quantum gates) + Measurement + "No noise"

(Controversial) examples of quantum advantage

Generating random numbers

Arute F. et al, *Nature* **574** 505 (2019) **53 qubits 10¹⁰ times faster**

Han-Sen Zhong et al., *Science* **370**, 6523pp. 1460-1463 (2020) **30 qubits 10¹⁴ times faster**

Yulin Wu et al. *Phys. Rev. Lett.* **127**, 180501 (2021) **30 qubits 10¹³ times faster**

Other examples

Simulation ofsmall quantum systems

W.J. Huggins et al., *Nature* **603**, 416–420 (2022) **53 qubits (google)**

I. Shapoval et al., *Quantum* **7**, 1138 (2023).

~ 20 qubits

?

?

Google Quantum AI *Nature* **614**, 676–681 (2023). **72 > 49 qubits (google)**

Art and multimedia?

Quantum creativity

Random generation and AI

James Wootton

Libby Heaney

Reasonable promises

A performance metric

Important algorithms (= solution recipe)

Factorizesinto prime numbers

• Cracks regular cryptography (RSA in particular)

Solution: quantum cryptography

Grover **Find elements in a list** Crucial when using big data

Important algorithms (= solution recipe)

Adiabatic **Optimization and chemistry**

- Many-body simulation
- Modeling of quantum systems

Applications: new materials, new/cheaper drugs/chemicals, high energy physics

Variational

Finding minimum

- Find the best path
- Train AI faster
- Solving equations (ex. Water/air flows)
- Inspiring classical algorithm: Netflix recommendations

What does an algorithm look like?

Using an SDK

```
from giskit ibm runtime import SamplerV2 as Sampler
\mathbb{I}\overline{2}# If using qiskit-ibm-runtime<0.24.0, change 'mode=' to 'backend='
3
     sampler = Samplef(mode=backend)
     sampler.options.default shots = 10000
\mathcal{G}_16
\overline{7}# Set simple error suppression/mitigation options
     sampler.options.dynamical_decoupling.enable = True
8
     sampler.options.dynamical decoupling.sequence type = "XY4"
\overline{Q}sampler.options.twirling.enable gates = True
10
     sampler.options.twirling.num_randomizations = "auto"
11
12pub= (optimized_circuit, )
13
     job = sampler.run([pub], shots=int(1e4))14counts_int = job.result()[0].data.meas.get_int_counts()
15
16
     counts_bin = job.read(t)[0].data.meas.get_counts()
     shots = sum(counts_int.values())17
     final distribution int = {key: val/shots for key, val in counts int.items()}
18
     final_distribution_bin = {key: val/shots for key, val in counts_bin.items()}
19
20
     print(final_distribution_int)
```
Conceptual representation

What makes a good qubit?

• perform as many calculations as possible on the qubits before their superposition and entanglement are lost.

• reliable control on the preparation, manipulation,

and measure of the qubit • We need to interconnect thousands – probably millions – of qubits to make a useful quantum computer.

Leading technologies

AQ^T (\bullet)

aws

ONQ

quobly

Trapped ions

- Qubit: 2 internal states of ions
- Long coherence time, high gate fidelity
- Hardly scalable **QUANTINUUM**

Neutral atoms(+Rydberg)

• Qubit: excitation of the

atoms

PASOAL

aws

Photons

XANADU

ALICE & BOB

- Mainly used as information carrier (travel at the sped of light)
- Difficult to make gates

 Ψ **PsiQuantum**

Colour centers

- Qubit: point defect in crystal
- Very clean
- Difficult to make

Spin qubits / quantum dots

- Qubit: up or down spin of a particle (electron or hole)
- Uses the semiconductor industry

Honorable mentions

Nuclear Magnetic Resonance

- Qubit: nuclear spin
- Scales poorly

Topological Majorana and anyons

- Qubit: braiding of anyons
- No realization…

And more !

Quantum annealer

• Restricted to a certain kind of problems and algorithms

Di:WaVe

Measurement-based

- Using measurement to do the algorithm
- Requires to start with many entangled qubits

Other utility of quantum?

Quantum sensors

Quantum simulators Quantum-inspired algorithms

Where we stand

- Classical computers struggle to simulate > 30 perfect qubits... in general
- Almost all technologies have proof-of-concept on 10-100 imperfect qubits
- Too many errors everywhere to see the benefit
- Other issues:

Large circuits The Always some noise The Far advantage